		٦	Tra	Traffic Li		
	AH Chemistry: Inorganic Chemistry JAB		ed	nber	uəə.	
T	Section 1a: Electromagnetic Radiation & Atomic Spectra		-	an	18	
1 2 4	Electromagnetic radiation are waves that have both wavelength and frequency wavelength Wavelength λ : (visible light wavelengths are usually given in nanometres) the distance between wave crest to wave crest Frequency f: (frequency is measured in Hertz) the number of waves per second Speed c: All electromagnetic waves travel at $3x10^8$ m s ⁻¹ The equation c= f λ shows the relationship between wavelength and frequency. $c = f x \lambda$ $f = \frac{C}{\lambda}$ $\lambda = \frac{C}{f}$		\odot		0	
	The radiation types of electromagnetic spectrum can be put in order of wavelength.					
3	EM Radiation Gamma rays X rays UV radiation Visible light Infra-Red radiation Microwaves Radio & TV waves Wavelength low — — — high Frequency high — — Iow Energy high — — Iow		3	:	0	
5	 Electromagnetic radiation has a dual nature. It can be described as a wave with wavelength and frequency a particle 		$\overline{\mathbf{O}}$		\odot	
	Electromagnetic radiation can be absorbed or emitted by matter					
6 7 9	 the radiation is behaving as a stream of particles called photons photons have quantised energy proportional to the frequency of the radiation higher the frequency the higher the energy (lower the wavelength the higher the energy) photons in high frequency radiation can transfer greater amounts of energy than photons in low frequency radiation. 		$\overline{\mathbf{S}}$:	3	
8 13 14	When a photon is absorbed, energy is gained by electrons being promoted to higher energy levels. When a photon is emitted, energy is lost by an excited electron moving from higher energy level to a lower energy level		$\overline{\mathbf{O}}$		\odot	
10 11 12	The energy associated by a single photon is: $\mathbf{E} = \mathbf{h} \times \mathbf{f}$ or $\mathbf{E} = \frac{\mathbf{h}\mathbf{C}}{\lambda}$ As energy is often given in the unit kJ mol ⁻¹ The energy associated by a one mole of photon is: $\mathbf{E} = \mathbf{L} \times \mathbf{h} \times \mathbf{f}$ or $\mathbf{E} = \frac{\mathbf{L}\mathbf{h}\mathbf{C}}{\lambda}$ $\frac{\mathbf{Symbol}}{\mathbf{E}} = \mathbf{L} \times \mathbf{h} \times \mathbf{f}$ or $\mathbf{E} = \frac{\mathbf{L}\mathbf{h}\mathbf{C}}{\lambda}$ $\frac{\mathbf{Symbol}}{\mathbf{E}} = \frac{\mathbf{L}\mathbf{n}\mathbf{r}\mathbf{S}}{\mathbf{E}\mathbf{n}\mathbf{r}\mathbf{r}\mathbf{S}}$ $\frac{\mathbf{K}\mathbf{J}\mathbf{m}\mathbf{O}\mathbf{I}^{-1}}{\mathbf{L}}$ $\frac{\mathbf{h}}{\mathbf{P}\mathbf{l}\mathbf{n}\mathbf{k}'\mathbf{S}} \operatorname{Constant} \frac{6.02 \times 10^{23} \operatorname{mol}^{-1}}{6.63 \times 10^{-34} \operatorname{Js}}$ $\frac{\mathbf{f}}{\mathbf{F}\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{q}\mathbf{u}\mathbf{n}\mathbf{r}\mathbf{S}}$		$\overline{\mathbb{S}}$::	3	
15 16	 Light energy emitted by an atom produces a spectrum that is made up of a series of lines at discrete (quantised) energy levels. this provides direct evidence for the existence of these energy levels. each element in sample produces characteristic absorption & emission spectra. These spectra can be used to identify and quantify the element. 		$\overline{\mbox{\scriptsize (s)}}$	(i)	3	
17 18	 In absorption spectroscopy, electromagnetic radiation is directed at an atomised sample. radiation is absorbed as electrons are promoted to higher energy levels. an absorption spectrum is produced by measuring how the intensity of absorbed light varies with wavelength. 		$\overline{\ensuremath{\mathfrak{S}}}$		0	
19 20	 In emission spectroscopy, high temperature is used to excite the electrons within atoms. As the electrons drop to lower energy levels, photons are emitted. emission spectrum of a sample is produced by measuring the intensity of light emitted at different wavelengths. 		3	٢	0	
21	In atomic spectroscopy, the concentration of an element within a sample is related to the intensity of light emitted or absorbed.		$\overline{\times}$	\bigcirc	\odot	

	All Chamistry Inorganic Chamistry		Traf	fic Li	ght
	Section 1b: Atomic Orbitals and Electronic Configurations		red	amber	green
22 23 24	 Discrete lines observed in atomic spectra can be explained if electrons, like photons, also display the properties of both particles and waves. electrons behave as standing (stationary) waves in an atom and these are waves that vibrate in time but do not move in space. different sizes and shapes of standing wave possible around the nucleus, known as orbitals. 	(8	:	٢
25	Orbitals can hold a maximum of two electrons.	($\overline{\mbox{\scriptsize (i)}}$	\odot	\odot
	There are four different shapes of orbitals, identified as s, p, d and f			-	
26	S orbital····s orbitals are circular and increase in size as value of n increases.1s2s3svv				
	$\begin{array}{c c} p\\ \text{orbital}\\ z\\ z\\$	(8	:	3
	d orbital y d_{xy} d_{yz} d_{yz} d_{zx} d_{zx} d_{zx} $d_{x^2-y^2}$ d_{z^2}				
	f orbital Not required to know f orbitals shapes for AH Chemistry.		_	-	
27	Electrons within atoms have fixed amounts of energy called quanta.	(\odot	(\Box)	\bigcirc
28a	 The principal quantum number (n) is the shell number of an energy level. the higher the value of n the larger the size of the s-orbital. 			::)	0
28b	The angular momentum quantum numbers (l) describes the type of subshell within an electron shell. • The values of l for each shell go from 0 up to n-1 Subshell Type s p d f Angular Momentum Number l=0 l=1 l=2 l=3	(8	:	٢
	The magnetic quantum numbers (m _l) describes the orientation of the orbitals within a				
	subshell.				
28c	SubshellValues of Magnetic Quantum Number (m_l) SubshellValues of Magnetic Quantum Number (m_l) s (l=0)0p (l=1)-1d (l=2)-2f (l=3)3210+1+2	(3	:	٢
284	The spin magnetic quantum number (m_s) determines the spin direction of an electron			\odot	\odot
200	and has values +½ or -½.		0	\bigcirc	\bigcirc
	increasing energy:				
29a	1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 4s ⁴ 4p ⁴ 4d ⁴ 4f ⁴ 5s ⁴ 5p ⁴ 5d ⁴ 5f ⁴ 6s ⁴ 7p ⁴ 8s ⁴	(3		٢
29b	Hund's rule states that electrons fill up orbitals singly first to maximise the number of parallel spins but filling each orbital with a second electron.e.g. iron atoms have 26 electrons and has an electronic configuration of $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$ 1st five d-electrons fill up singly 6^{th} d electrons doubles up.1 t	(8		٢

29c	The Pauli • t	 The Pauli exclusion principle states that two electrons in the same atom cannot have the same four quantum numbers no orbital can hold more than two electrons. 					s	<u>()</u>	:	\odot			
30	In isolate	In isolated atoms, orbitals within each subshell are degenerate (equal in energy)							\odot	\odot	\odot		
31	I can represent the relative energies corresponding to each orbital diagrammatically for				or	$(\dot{\sim})$	(\odot					
	the first four shells of a multi-electron atom using orbital box notation.				ion))						
	can be w	can be written.											
	Element	Spectroscopi	ic Notation		Electronic	Orbit	al Box Notation						
32	Scandium	1s² 2s² 2p ⁶ 3s²	² 3p ⁶ 3d ¹ 4s ²	t↓ ₂s	$\begin{array}{c c} \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\ {}_{2p} \end{array}$	↑↓ _{3s}	$\begin{array}{ c c c } \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \\ _{3\rho} \end{array}$	1	3d	↓ 4s	3		\odot
	Vanadium	1s² 2s² 2p ⁶ 3s²	2 3p ⁶ 3d ³ 4s ² 1	↑↓ 2s	$\begin{array}{c c} \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow \\ & 2p \end{array}$	↑↓ _{3s}	$\begin{array}{ c c c } \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \\ _{3\rho} \end{array}$	11	↑ 3d	4s))	
	Cobalt	1s² 2s² 2p ⁶ 3s²	² 3p ⁶ 3d ⁷ 4s ²	t↓ ₂s	$\begin{array}{c c} \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\ _{2p} \end{array}$	↑↓ _{3s}	$\begin{array}{c c} \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \\ _{3p} \end{array}$	↑↓ ↑↓	↑ ↑ ↑ 1 3d	t↓ 4s			
33	The periodic table is subdivided into four blocks (s, p, d and f) corresponding to the outer electronic configurations of the elements within these blocks.					uter	<u>()</u>	:	\odot				
	Gro	ups 1→2	Groups 3→	•0	Transition Me	tals	Actinide	s and La	nthanides.				
34 35 36	Variation for the firs configura Elemen Lithium Berylliun Boron Carbor Nitroge Oxyger Fluoring Anomalies • th	in 1 st , 2 ^{nc} st 36 eler tions and n Electro n n Electro n n Electro n n S in ionisa nere is a ne more s	and subsect ments is due this provide on Configurati $1s^2 2s^1$ $1s^2 2s^2$ $1s^2 2s^2 2p^1$ $1s^2 2s^2 2p^2$ $1s^2 2s^2 2p^2$ $1s^2 2s^2 2p^3$ $1s^2 2s^2 2p^3$ $1s^2 2s^2 2p^4$ $1s^2 2s^2 2p^5$ ation energy to special stable the electronic	ion 1s Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	onisation en relative sta ence for the it lonisation E H = +526 kJ H = +905 kJ H = +905 kJ H = +1090 kJ H = +1090 kJ I = +1410 kJ r I = +1320 kJ r I = +1690 kJ r are explaine sociated wit ic configurat	iergies bility o se ele mol ⁻¹ mol ⁻¹ mol ⁻¹ mol ⁻¹ mol ⁻¹ mol ⁻¹ d by co h half- tion, th	 with increa f different successful cetronic conf Removing an involves brea shell so requances an electron 1 ↓ Ts Boron has 2 removes the behind the m 1s Boron has 2 removes the behind the m 1s Sitrogen is ha filled 2p shell single electron 1s Oxygen is ea from as it creates from as it creates from as it creates filled and function e higher the 	sing at ubshell iguratic n electron aking a re- trires more $\uparrow \downarrow$ 2s p^1 and re- entire $2p$ $\uparrow \downarrow$ 2s p^2 and re- entire $2p$ hore stab $\uparrow \downarrow$ 2s arder to s a relati- ll with par- ons. $\uparrow \downarrow$ 2s assier to re- eates a h $\uparrow \downarrow$ 2s ectronic ll subsh 2 ionisa	omic numbe electronic ons. e.g. n from Berylliur elatively stable e energy to ren 2p moving an elec o shell and leav le full $2p^2$ 1 2p remove an elect vely stable half rallel sins on th 1 1 1 2p emove an elect alf-filled $2p$ she 1 1 1 2p configuratio hells tion energy.	r n 2s ² hove tron tron e ↑ ill. ↑ ns.	\odot	:	\odot
37 38	VSEPR (molecules The numb	valence s s and pol per of ele Electron	shell electror lyatomic ions ectron pairs s pairs = _a	n pair r S. Surroui Number o around ce	repulsion) th nding a cent f electrons +	eory is ral ato numl	s used to pre om is calcula per of bonds 2	edict the Ited by: S - C	e shapes of charge		3	(i)	0
39 40	Electron p • e • b <u>p</u> 2 electro F — Be	oairs are lectron p oth lone airs arou on pairs e — F ear	negatively c airs are arra pairs and bo ind the centr 3 electron parts 3 electron parts Trigonal Pla	harged to onding al ator airs	d and repel of to minimise in pairs take p n. 4 electron part Tetrahedr	each c repuls art in o airs	other ion and max deciding the 5 electron pa 5 electron pa Trigonal Pyra	cimise s shape airs midal	separation. of the electron <u>6 electron pai</u>	ron rs	3	9	0

	All Chamietry Increasing Chamietry		affic L	ight
	Section 1c: Transition Metals	red	amber	green
44	Metals with an incomplete d subshell in at least one of their ions are called d-block transition metals	8		\odot
45	The aufbau principle states that orbitals of the lowest energy fill up first with electrons Exceptions to aufbau rule include: Element Electronic Configuration Actual Electronic configuration Chromium 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁴ 4s ² 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹ Half-filled 3d ⁵ preferred to full 4s ²	8		\odot
	Copper $1s^2 2s^2 2p^6 3s^2 3p^6 3d^9 4s^2$ $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$ Full $3d^{10}$			
46	Electrons are lost from the outer electrons shell first, regardless of the order they fill up in according to the aufbau principle. In transition metals, 4s electrons are removed before 3d electrons when metal ions are formed.	8		:
47 48	 An element is in a particular oxidation state when it has a specific oxidation number. oxidation number in a free or uncombined element in zero for single atoms ions, the oxidation number is the same as the charge on the ion hydrogen usually has a oxidation number of +1 (except in hydrides) oxygen usually has an oxidation number of -2 (except in peroxides) The algebraic sum of all the oxidation numbers in a molecule must be zero e.g. In SO₃, three O atoms give 3x oxidation state of +6. The algebraic sum of all the oxidation numbers in a polyatomic ion must be equal to the charge on the ion e.g. In SO₄², four O atoms give 4x oxidation state of -2 and combine to equal -8 therefore the sulphur must have the oxidation state of +6 to allow the overall charge to equal -2. 	8		\odot
49 50	Transition metals can have different oxidation states in its compounds. • compounds of the same transition metal in different oxidation states may have different colours e.g. Ion VO3 ⁻ VO ²⁺ V ³⁺ V ²⁺ Oxidation Sate of Vanadium +5 +4 +3 +2 Colour Yellow Blue Green Violet	8		٢
51	Oxidation occurs when the oxidation number of a species increases	$(\dot{\sim})$	\odot	\odot
52	Reduction occurs when the oxidation number of a species decreases Compounds containing metals in high oxidation states are often oxidising agents. Oxidising agents are reduced themselves which reduces the oxidation number Compounds with metals in low oxidation states are often reducing agents. Reducing agents are oxidised themselves which increases the oxidation number 	8	©	: :
54 55	A ligand is defined as a molecule or ion electron donor which bonds to the metal ion by the donation of one or more electron pairs to unfilled metal ion orbitals.	8		0
57	 The total number of bonds of the ligand(s) to the central transition metal ion is called the co-ordination number EDTA has a co-ordination number of 6 hexaaquacopper(II) [Cu(OH₂)₆]²⁺ has a co-ordination number of 6 as the central Cu²⁺ ion is surrounded by 6 water molecules tetrachloridocuprate(II) [CuCl₄]²⁻ has a co-ordination number of 4 as the central Cu²⁺ ion is surrounded by 4 negative chloride ions 	8		:

	Naming of Complexes from	n Formula			
	Ligands listed alphabetica	Illy followed by the name of the central metal ion			
	Naming of ligands follow t	he following rules			
	Neutral Ligand Naming	Charged Ligands Naming			
	Ammonia ammine	-ide ending ligand e.g. chiolide chiolido			
	Carbon monoxide carbonyl	-ite ending ligand e.g. nitrite nitrito			
	 Mono. di, tri, tetra, penta. 	prefixes are used for multiple ligands of the same type			
	If complex ion is overall a	negative ion, the suffix –ate is added to the metal			
	o nickel becomes n	ickelate(II)			
	o iron becomes fe	errate(III) [not ironate]			
56	o copper becomes c	uprate(II) [not copperate]	\frown	\sim	
58	 If complex ion is overall a The evidation state of the 	positive ion, the metal does not have the suffix -ate	3	\ominus	\odot
	brackets)				
	e.a. [Co[NH ₃) ₆] ²⁺	is hexaamminecobalt(II)			
	[Fe(O ₄ C ₂) ₃) ₆]] ³⁻ is trioxalatoferrate(III)			
	Writing Formula from Nam	nes of Complexes			
	formula of complex ions a	re written in square brackets			
	 metal symbol comes first 				
	 ligands are listed alphabe 	tically irrespective of being charged or neutral			
	atom in ligand which dona	ates pair of electrons written first e.g. OH ₂ or O ₄ C ₂ ²⁻			
	overall charge on complex	x ion written after square brackets			
	e.g. tetrachloridocupra	ate(II) is written as $[CuCl_4]^{2-}$			
		II) is written as $[Cu(H_2O)_6]^{2+}$			
	splitting of d orbitals to big	the d orbitals are no longer degenerate (equal in energy)			
59	present in approaching lig	ands cause the electrons in the orbitals lying along the	\odot	\odot	\odot
60	axes to be repelled.		3	\ominus	\odot
01	weak field and strong field	l ligands affect energy differences between subsets of d			
	orbitals.				
	Ligands can be placed in a spectr	ochemical series based on their ability to split d orbitals.	\frown	\odot	\odot
62			(\approx)		$(\overline{}, \overline{})$
62		$^{\circ} < F^{-} < H_2O < NH_3 < CN^{-}$	0	Θ	\odot
62	$I^- < Br^- < CI^-$ The colour of transition metal com	$F < F^- < H_2O < NH_3 < CN^-$	8		0
62	I [−] < Br [−] < CI [−] The colour of transition metal com • dx ² −y ² and dz ² orbitals are	$< F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic	8		0
62	I [−] < Br [−] < CI [−] The colour of transition metal com • dx ² -y ² and dz ² orbitals are repulsion from the ligands	$F < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex	8		0
62	 I[−] < Br[−] < CI[−] The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low 	$F < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d-	8	9	
62	 I⁻ < Br⁻ < CI⁻ The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state) 	$F < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d-	(3)	9	0
62 63 64	 I⁻ < Br⁻ < CI⁻ The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state) 	$F < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d-	8		0
62 63 64 65	 I⁻ < Br⁻ < CI⁻ The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state) the dxt-yt 	$F < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- absorption of energy $\stackrel{\downarrow}{\longrightarrow} \stackrel{\downarrow}{\longrightarrow} \stackrel{\downarrow}{\longrightarrow} \stackrel{\downarrow}{\longrightarrow}$	6)	•	0
62 63 64 65	 I⁻ < Br⁻ < CI⁻ The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state) t⁺/_{dxt-yt} t⁺/_{dxt-yt} t⁺/_{dxt-yt} t⁺/_{dxt-yt} t⁺/_{dxt-yt} 	$F < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- absorption of energy $\stackrel{\uparrow}{\longrightarrow}$ $\stackrel{\uparrow}{\longrightarrow}$ $\stackrel{\downarrow}{\longrightarrow}$ $\stackrel{\downarrow}{\longrightarrow}$ $\stackrel{\downarrow}{\longrightarrow}$	8		0
62 63 64 65	 I⁻ < Br⁻ < CI⁻ The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state) transition the ligands transition metals can abso excite electrons in the low orbital (excited state)	$F < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- absorption of energy $\downarrow_{d_{xy}} \qquad \downarrow_{d_{xz}} \qquad \downarrow_{d_{yz}}$	8		0
62 63 64 65	 I⁻ < Br⁻ < CI⁻ The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state) transition the ligands tight of one colour is abson electrons transition to high 	$r < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- absorption of energy $\stackrel{\ddagger}{\longrightarrow} \stackrel{\ddagger}{\longrightarrow} \stackrel{\ddagger}{\longleftarrow} \stackrel{\ddagger}{=} \stackrel{i}{=} \stackrel$	8	•	0
62 63 64 65	 I⁻ < Br⁻ < CI⁻ The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state) transition metals can abso excite electrons in the low orbital (excited state) transition the ligands transition metals can abso excite electrons in the low orbital (excited state) transition the low orbital (excited state) transition to high draw the d	$F < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- <u>absorption of energy</u> $\downarrow_{d_{xy}} \downarrow_{d_{xz}} \downarrow_{d_{xz}}$ the d, then the complementary colour will be observed. her energy levels when energy corresponding to the s of the electromagnetic spectrum is absorbed.	8		0
62 63 64 65	 I⁻ < Br⁻ < CI⁻ The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state)	$F < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- absorption of energy $f_{d_{xy}} = f_{d_{xz}} = f_{d_{yz}}$ rbed, then the complementary colour will be observed. ier energy levels when energy corresponding to the <u>s of the electromagnetic spectrum is absorbed.</u> ysts as they can form a variable number of bonds due	8	•	0
62 63 64 65	 I[−] < Br[−] < CI[−] The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state)	$r < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- absorption of energy $\downarrow_{d_{xxye}} \downarrow_{d_{xx}} \downarrow_{d_{yz}}$ rbed, then the complementary colour will be observed. her energy levels when energy corresponding to the s of the electromagnetic spectrum is absorbed. ysts as they can form a variable number of bonds due nd half-filled d-orbitals	8	•	©
62 63 64 65 66 67	 I⁻ < Br⁻ < CI⁻ The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state)	$r < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- <u>absorption of energy</u> $\downarrow_{d_{xx}yx}$ $\downarrow_{d_{xx}}$ $\downarrow_{d_{xy}}$ $\downarrow_{d_{xx}}$ rbed, then the complementary colour will be observed. her energy levels when energy corresponding to the is of the electromagnetic spectrum is absorbed. ysts as they can form a variable number of bonds due n of intermediate complexes	8		0
62 63 64 65 66 67 68	 I⁻ < Br⁻ < CI⁻ The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state)	$r < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- absorption of energy $f_{d_{xr}} \stackrel{\uparrow}{=} f_{d_{xr}}$ the d, then the complementary colour will be observed. The energy levels when energy corresponding to the is of the electromagnetic spectrum is absorbed. ysts as they can form a variable number of bonds due nd half-filled d-orbitals n of intermediate complexes /s of lower energy to proceed	8	•	0
62 63 64 65 66 67 68	 I⁻ < Br⁻ < CI⁻ The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state) transition metals can absore excite electrons in the low orbital (excited state) t⁺/_{dxy} t⁺/_{dxz} light of one colour is absore electrons transition to high ultraviolet or visible region Transition metals can act as cataly to the availability of unoccupied are allows the easier formation provides reaction pathway variability of oxidation state a transition metal report to the transition metal report to the transition metal report to the transition metals can act as cataly to the availability of oxidation state a transition metal report to the transition metals can act as cataly to the availability of oxidation state a transition metals report to the transition metals can act as cataly to the availability of transition pathway variability of transition metals can act as cataly to the availability of transition pathway to transition pathway to transition to high transition pathway to transition metals can act as cataly to the availability of transition pathway to transition pathway to transition to transition to transition to transition to high transition pathway to transition to transite transition to transition	$r < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- absorption of energy $\stackrel{\uparrow}{\longrightarrow} \stackrel{\uparrow}{\longrightarrow} \stackrel{\downarrow}{\longrightarrow} \stackrel$	8		© ©
62 63 64 65 66 67 68	 I⁻ < Br⁻ < CI⁻ The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state) transition metals can absore electrons in the low orbital (excited state) the transition determines light of one colour is absore electrons transition to high ultraviolet or visible region Transition metals can act as cataly to the availability of unoccupied are allows the easier formation provides reaction pathway variability of oxidation state transition metal reverts to 	$r < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- <u>absorption of energy</u> $\downarrow_{d_{xxyx}} \downarrow_{d_{xx}}$ $\downarrow_{d_{xy}} \downarrow_{d_{xx}} \downarrow_{d_{xx}}$ rbed, then the complementary colour will be observed. her energy levels when energy corresponding to the is of the electromagnetic spectrum is absorbed. ysts as they can form a variable number of bonds due h half-filled d-orbitals n of intermediate complexes /s of lower energy to proceed te of transition metals is important factor. original oxidation state once the reaction is complete	8		
62 63 64 65 66 67 68 69a	 I⁻ < Br⁻ < CI⁻ The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state) transition metals can absore electrons in the low orbital (excited state) t t t t t t t t t t t t t t t t t t t	$r < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- absorption of energy $f_{dxy} = f_{dx} = f_{dx}$ rbed, then the complementary colour will be observed. her energy levels when energy corresponding to the is of the electromagnetic spectrum is absorbed. ysts as they can form a variable number of bonds due nd half-filled d-orbitals n of intermediate complexes /s of lower energy to proceed e of transition metals is important factor. original oxidation state once the reaction is complete re same state as the reactants.	8		000000000000000000000000000000000000000
62 63 64 65 66 67 68 69a	 I⁻ < Br⁻ < CI⁻ The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state) transition metals can absore excite electrons in the low orbital (excited state) t⁺/_{dx,y} t⁺/_{dx,z} light of one colour is absore electrons transition to high ultraviolet or visible region Transition metals can act as cataly to the availability of unoccupied are allows the easier formation provides reaction pathway variability of oxidation stat transition metal reverts to Homogeneous catalysts are in the Heterogeneous catalysts are in the section of the	$c < F^{-} < H_2O < NH_3 < CN^{-}$ Inplexes can be explained in terms of d-d transitions. In raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- absorption of energy $f_{d_{xy}} f_{d_{xz}} f_{d_{xz}}$ Thed, then the complementary colour will be observed. There energy levels when energy corresponding to the is of the electromagnetic spectrum is absorbed. ysts as they can form a variable number of bonds due nd half-filled d-orbitals n of intermediate complexes /s of lower energy to proceed the of transition metals is important factor. original oxidation state once the reaction is complete e same state as the reactants. e different state as the reactants. e different state as the reactants.	8		000000000000000000000000000000000000000
62 63 64 65 66 67 68 69a	 I⁻ < Br⁻ < CI⁻ The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state) transition metals can absore excite electrons in the low orbital (excited state) t⁺/_{dxy} t⁺/_{dxz} light of one colour is absore electrons transition to high ultraviolet or visible region Transition metals can act as cataly to the availability of unoccupied are allows the easier formation provides reaction pathway variability of oxidation state transition metal reverts to Homogeneous catalysts are in the Heterogeneous catalysts are in the Heterogeneous catalysts are in the electrons catalysts are in thelectrons catalysts are in the electrons catalysts are in the	$< F^{-} < H_2O < NH_3 < CN^{-}$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- $\frac{4}{d_{xy}} + \frac{4}{d_{xz}} + \frac{4}{d_{xz}}$ rbed, then the complementary colour will be observed. rer energy levels when energy corresponding to the is of the electromagnetic spectrum is absorbed. ysts as they can form a variable number of bonds due nd half-filled d-orbitals n of intermediate complexes /s of lower energy to proceed e of transition metals is important factor. original oxidation state once the reaction is complete same state as the reactants. e different state as the reactants. work by the adsorption of reactant molecules	© ©		
62 63 64 65 66 67 68 69a	I [−] < Br [−] < CI [−] The colour of transition metal com dx²-y² and dz² orbitals are repulsion from the ligands transition metals can abso excite electrons in the low orbital (excited state) transition metals can absore transition the low orbital (excited state) the transition metals can absore electrons transition to high ultraviolet or visible region Transition metals can act as cataly to the availability of unoccupied ar allows the easier formation provides reaction pathway variability of oxidation state transition metal reverts to Homogeneous catalysts are in the Heterogeneous catalysts or the easier formation	$r < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- absorption of energy $\stackrel{\uparrow}{\underset{d_{xx}}{}} \stackrel{\uparrow}{\underset{d_{xx}}{}} \stackrel{\uparrow}{\underset{d_{xx}}{}}$ rbed, then the complementary colour will be observed. her energy levels when energy corresponding to the is of the electromagnetic spectrum is absorbed. ysts as they can form a variable number of bonds due hd half-filled d-orbitals n of intermediate complexes /s of lower energy to proceed :e of transition metals is important factor. original oxidation state once the reaction is complete \Rightarrow <u>same</u> state as the reactants. e <u>different</u> state as the reactants. <i>work</i> by the adsorption of reactant molecules	8		000000000000000000000000000000000000000
62 63 64 65 66 67 68 69a 69b	I < Br < CI	$c < F^- < H_2O < NH_3 < CN^-$ $raised to a higher energy level due to electrostaticin the complexorb light because photons (at a particular wavelength)er d-orbitals (ground state) up to a higher energy d- absorption of energy \qquad \stackrel{++}{\underset{d_{x},y}{}} \stackrel{++}{\underset{d_{x}}{}} \stackrel{+-}{\underset{d_{x}}{}} \stackrel{++}{\underset{d_{x},y}{}} \stackrel{++}{\underset{d_{x}}{}} \stackrel{+-}{\underset{d_{x}}{}} rbed, then the complementary colour will be observed. her energy levels when energy corresponding to the is of the electromagnetic spectrum is absorbed. ysts as they can form a variable number of bonds due hd half-filled d-orbitals n of intermediate complexes ys of lower energy to proceed e of transition metals is important factor. original oxidation state once the reaction is complete a same state as the reactants. e different state as the reactants. work by the adsorption of reactant molecules$	© © ©		
62 63 64 65 66 67 68 69a 69a 69b 70	I < Br < Cl →	$r < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- absorption of energy $f_{dxy} = f_{dx} = f_{dy}$ rbed, then the complementary colur will be observed. her energy levels when energy corresponding to the is of the electromagnetic spectrum is absorbed. ysts as they can form a variable number of bonds due nd half-filled d-orbitals n of intermediate complexes /s of lower energy to proceed te of transition metals is important factor. original oxidation state once the reaction is complete \Rightarrow same state as the reactants. e different state as the reactants. work by the adsorption of reactant molecules	© © ©		
62 63 64 65 66 67 68 69a 69b 70	I < Br < CI	$f < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- absorption of energy $\begin{array}{c} \underbrace{ \ddagger \\ d_{xy} \\ d_{xz} \\ d_{xz}$	© © ©		
62 63 64 65 66 67 68 69a 69b 70	I < Br < CI	$r < F^- < H_2O < NH_3 < CN^-$ plexes can be explained in terms of d-d transitions. raised to a higher energy level due to electrostatic in the complex orb light because photons (at a particular wavelength) er d-orbitals (ground state) up to a higher energy d- <u>absorption of energy</u> $\frac{\uparrow_{d_{xx}}}{\downarrow_{d_{xx}}} \stackrel{\uparrow_{d_{xx}}}{\downarrow_{d_{xx}}}$ rbed, then the complementary colour will be observed. her energy levels when energy corresponding to the is of the electromagnetic spectrum is absorbed. ysts as they can form a variable number of bonds due hd half-filled d-orbitals n of intermediate complexes /s of lower energy to proceed e of transition metals is important factor. original oxidation state once the reaction is complete a same state as the reactants. e different state as the reactants. work by the adsorption of reactant molecules // Catalyst molecule Activated Complex Product molecule(s)	© © ©		

				Tra	ffic L	ight	
		ection 2a: Chemical Equilibrium	JAB chem	red	amber	green	
 71 72	A chemical reaction remains constant in	n is in equilibrium when the composition of the reactants and finitely.	ind products	8			
	equilibrium For the	constant (K) characterises the equilibrium composition of the rea	action mixture				
	general reaction:	aA + bB ───── cC + dD					
73	The equilibrium expression is:	$K = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$		8	:	\odot	
	where:	[A], [B], [C] & [D] are the equilibrium concentrations of A, a, b, c & d are the stoichiometric coefficients in the balance	B, C and D ced equation				
	The value of equilib	rium constant can be calculated: rium constant has no units.	i				
74	e.g. 0.8mol of nitro container to gi	gen and 1.5mol of hydrogen react by the Haber Process in ve ammonia with an equilibrium concentration of 0.4mol.	n a one litre				
	Equation:	N_2 + $3H_2$ \implies 2	2NH ₃				
74 76	Mole ratio	1 mol 3mol 0.2mol 0.6mol	2mol 0.4mol	$\overline{\otimes}$		\odot	
	(Reactants Left) (0						
	As container has 1 litre volume, the number of moles is equal to concentration in mol l^{-1} $[NH_3]^2 [0.4]^2 = 0.000$						
	K						
75	The value of the ec	uilibrium constant K indicates the position of equilibrium.	RIGHT	(3)	\odot	\odot	
10	A very low	EFT		\cup	•		
77	Concentrations of p given a value of 1 i	oure solids and pure liquids at equilibrium are taken as con n the equilibrium expression.	nstant and	$\overline{\mbox{$\odot$}}$	\bigcirc	\odot	
78	The numerical valu and is independent	Ie of the equilibrium constant depends on the reaction tem t of concentration and/or pressure.	perature	$\overline{\mbox{\scriptsize (s)}}$	\bigcirc	\odot	
79	For endothermic re • a rise in temperate • yield of the produce	eactionsFor exothermic reactionsure causes an increase in K• a rise in temperature causes a dect is increased• yield of the product is decreased.	crease in <i>K</i>	$\overline{\mathbf{o}}$		\odot	
80	The presence of a	catalyst does not affect the value of the equilibrium consta	ant.	$\overline{\mathbf{S}}$	\bigcirc	\odot	
81	In water and aqueo hydroxide ions. Thi	bus solutions, water molecules form an equilibrium with hy is ionisation of water can be represented by:	dronium and	6	\odot	\odot	
	H ₂ O(l) -	$H_{2}O(l) = H_{3}O^{+}(aq) + O(l)$	JH (aq) hydroxide ion				
82	represented by the	the formula $H_3O^{+}(aq)$ and is a hydrated proton and is often shorthand $H^{+}(aq)$	1	$\overline{\mathfrak{S}}$	\bigcirc	\odot	
83	Water is described	as amphoteric as it can act as an acid or a base.		$\overline{\mathfrak{S}}$	\bigcirc	\odot	
84	The dissociation co	Instant K _w for the ionisation of water is known as the ionic $K_w = [H_3O^+][OH^-]$	product:	<u>.</u>	\odot		
85	 value of K_v K_w is approx 	varies with temperature 2^{10} varies 1×10^{-14} at 25°C.		\odot		\bigcirc	
	The relationship be	tween pH and the hydronium H_3O^+ ion concentration is given by	ven by:			<u> </u>	
86	pl	$H = -\log_{10}[H_3O^+] \qquad [H_3O^+] = 10^{-pH}$		0	Θ	\bigcirc	
87	In water and aqueo OH ⁻ (aq) are both eq	bus solutions with a pH value of 7, the concentrations of H ual to 10^{-7} mol l^{-1} at 25°C.	3O ⁺ (aq) and	$\overline{\times}$		\odot	
	be calculated using	the ionic product K_w (or by using pH + pOH = 14.)					
88	e.g. Calculate the [OH J II [H ₃ U ⁺] = 0.025mol l ⁻¹ OH-1 = $\frac{K_w}{1 \times 10^{-14}} = 4 \times 10^{-13} \text{ mol } 1^{-1}$				\bigcirc	
	l	$O[I] = \frac{I}{[H_3O^+]} = \frac{1}{0.025} = 4 \times 10^{10} \text{ mol} [1]$					

	The Brønsted-Lowry definition of acids and bases are:				
	Acid Loses a proton (H ⁺) to form the conjugate base				
	Base Gains a proton (H ⁺) to form the conjugate acid				
89	Conjugate Acid Formed when the base gains a proton (H ⁺)		_	-	-
90	Conjugate Base Formed when the acid loses a proton (H ⁺)		3	\odot	\odot
91	For example:				
	$CH_3COOH_{(a0)} + H_2O_{(1)} = CH_3COO^{-}_{(a0)} + H_3O^{+}_{(a0)}$				
	acid base conjugate base conjugate base $conjugate base$				
	Strong acids fully dissociate into their ions				
92	$[e.g. HCI(g) + H_2O(l) \longrightarrow H_3O^{+}(aq) + CI^{-}(aq)$	($\overline{\mathfrak{R}}$	($)$	\odot
	Weak acids partially dissociate into their ions		\smile)	0
	$e.g. CH_3COOH(l) + H_2O(l) = CH_3COO^{-}(aq) + H_3O^{+}(aq)$				
	Examples of strong and weak acids & alkalis include:				
93	Strong Acid Weak Acid Strong Base Weak Base	0	$\hat{\boldsymbol{x}}$	$(\underline{\cdot})$	\odot
94	sulphuric Acid carbonic acid Potassium hydroxide		\smile)	0
	nitric Acid sulphurous acid Lithium hydroxide				
	Carboxylic acids (and other weak acids) partially dissociate into ions, staying mainly as molecules.				
	Weak Acid Equilibrium Equation		~	-	-
95	Ethanoic acid $CH_3COOH(l) + H_2O(l) = CH_3COO^-(aq) + H_3O^+(aq)$	(3	(\odot
	Sulphur Dioxide solution $SO_{2(g)} + 2H_2O(l) = 2H_3O^+(aq) + SO_4^{2^-}(aq)$				
	Carbon Dioxide solution $CO_{2(g)} + 2H_2O(l) = 2H_3O^+(aq) + CO_3^{2^-}(aq)$				
	Ammonia, and amines, only partially dissociate into ions and mainly stays as molecules				
00	Weak Base Equilibrium Equation		.	\odot	\bigcirc
96	Ammonia solution $NH_{3(aq)} + H_2O(l) = NH_{4^+(aq)} + OH^{-}(aq)$	Q	Ö	$\underline{\Theta}$	\odot
	1-aminomethane solution $CH_3NH_2(aq) + H_2O(l) = CH_3NH_3^+(aq) + OH_2(aq)$				
	Equimolar solutions of weak and strong acids/bases have the following properties:				
97	Property Strong Acid Weak Acid Property Strong Base Weak Base		<u>.</u>	\odot	\odot
	pH Value lower Higher (Nearer pH=7) pH Value higher Lower (nearer pH=7)	6	ð	\bigcirc	\odot
	Conductivity Higher Lower Conductivity Higher Lower Reaction Rate Higher Lower Reaction Rate Higher Lower				
	The acid dissociation constant or the equation $HA + H_2O = H_3O^+ + A^-$ is:				
98	[H ₃ O ⁺] [A ⁻]	0	$\hat{\mathbf{x}}$	\odot	\odot
30	$K_a = \frac{1}{[HA]}$ $\therefore pK_a = -log_{10} K_a$	×	0	Θ	9
	NB AS H_2O is both a reactant and the solvent, [H_2O] is given the value = 1 and cancels out of equation.				
	The approximate pH of a weak acid $pH = \frac{1}{2}pK_a - \frac{1}{2}log_{10}C$				
	can be calculated using:				
	[e.g. calculate the pH of 0.25mol 1 ⁺ solution of ethanoic acid ($pR_a = 4.76$)				
99	$p_{\Pi} = \frac{1}{2}p_{Ra} - \frac{1}{2}log_{10}c$	($\tilde{\boldsymbol{\varepsilon}}$	(\odot
	$pH = \frac{1}{2} \times 4.76 - \frac{1}{2} \times \log_{10}(0.25)$		-	•	•
	$pH = 2.38 - \frac{1}{2}x(-0.60)$				
	pH = 2.38 - (-0.30)				
	pH = 2.68				
	Acid Type Base Type pH of solution of Soluble Salt formed				
100	Strong Acid Strong Base Neutral Solution		3	\odot	\odot
	Weak Acid Strong Base Alkaline solution		-	•	•
	The nerves of solts are worked out from the individual solds and besser used				
	Acid Lised Base Lised Name of Salt Acid Lised Base Lised Name of Salt				0
101	And Used Base Used Name of Call Address and Date Used Hume of Call	(3	(\Box)	\odot
101	hydrochloric acid sodium hydroxide sodium chloride ethanoic acid magnesium hydroxide magnesium ethanoate	N N	-		
	nydrochloric acid sodium nydroxide sodium chloride etnanoic acid magnesium nydroxide magnesium etnanoate sulphuric acid Potassium hydroxide potassium sulphate sulphurous acid calcium hydroxide calcium sulphite nitric acid lithium hydroxide lithium nitrate carbonic acid ammonia solution ammonium carbonate		-		
	hydrochloric acid sodium hydroxide sodium chloride ethanoic acid magnesium hydroxide magnesium ethanoate sulphuric acid Potassium hydroxide potassium sulphate sulphuric acid calcium hydroxide calcium hydroxi				
	hydrochloric acid sodium hydroxide sodium chloride magnesium hydroxide magnesium ethanoate sulphuric acid Potassium hydroxide potassium sulphate sulphurous acid calcium hydroxide calcium sulphite nitric acid lithium hydroxide lithium nitrate calcium hydroxide calcium hydroxide calcium hydroxide Salt solutions can have different concentrations of H ₃ O ⁺ (aq) and OH ⁻ (aq): Sodium ethanoate solution has pH greater than 7 Ammonium chloride solution has pH less than 7				
	hydrochloric acid Sodium hydroxide sodium chloride ethanoic acid magnesium hydroxide magnesium ethanoate sulphuric acid Potassium hydroxide potassium sulphate sulphurous acid calcium hydroxide calcium sulphite nitric acid lithium hydroxide lithium nitrate calcium hydroxide ammonium carbonate Salt solutions can have different concentrations of H ₃ O ⁺ (aq) and OH ⁻ (aq): Sodium ethanoate solution has pH greater than 7 Ammonium chloride solution has pH less than 7 Sodium ethanoate solid fully dissociates into ions on dissolving. Ammonium chloride solid fully dissociates into ions on dissolving. Ammonium chloride solid fully dissociates into ions on dissolving.				
102	hydrochioric acid sodium hydroxide sodium chioride hydrochioric acid Potassium hydroxide potassium sulphate ethanoic acid magnesium hydroxide magnesium ethanoate intric acid lithium hydroxide potassium sulphate ithium hydroxide calcium hydroxide calcium sulphite Salt solutions can have different concentrations of H ₃ O ⁺ (aq) and OH ⁻ (aq): Sodium ethanoate solid fully dissociates into ions on dissolving. Ammonium chloride solid fully dissociates into ions on dissolving. Ethanoate ions collide with H ₃ O ⁺ ions to form molecules of ethanoic acid: Ammonium chloride solid fully dissociates of NH ₃ CH ₃ COO ⁻ (aq) + H ₃ O ⁺ (aq) CH ₃ COO ⁺ (aq) + H ₃ O ⁺ (aq) HH ₃ (aq) + H ₂ O ⁺ (aq)		3	0	0
102	hydrochioric acid sodium hydroxide sodium chioride potassium sulphate sulphuric acid Potassium hydroxide potassium sulphate sulphurous acid calcium hydroxide magnesium fudroxide calcium hydroxide		3	:	:
102	hydrochloric acid Sodium hydroxide sodium hydroxide magnesium fugroxide calcium hydroxide calcium sulphite sulphuric acid itthium hydroxide itthium nitrate itthium hydroxide calcium hydroxide calciu		8	•	٢
102	hydrochloric acid Sodium hydroxide sodium hydroxide sodium chloride sulphuric acid Potassium hydroxide potassium sulphate isulphurous acid calcium hydroxide magnesium ethanoate intric acid itthium hydroxide lithium nitrate itthium hydroxide ammonium calcium hydroxide ammonium calcium hydroxide ammonium calcium hydroxide ammonium calcium hydroxide Salt solutions can have different concentrations of H ₃ O ⁺ (aq) and OH ⁻ (aq): Sodium ethanoate solid fully dissociates into ions on dissolving. Ammonium chloride solid fully dissociates into ions on dissolving. Ethanoate ions collide with H ₃ O ⁺ (ang) CH ₃ COOH _{a0} + H ₂ O ₁ (0) Ammonium chloride solid fully dissociates of H ₃ O CH ₃ COOF _{(a0}) + H ₃ O ⁺ (a0) CH ₃ COOH _{a0} + H ₂ O ₁ (0) NH ₄ ⁺ (a0) + OH ⁺ (a0) MH ₃ O ₄ (a0) + H ₂ O ₁ (0) ethanoate ion sculide with H ₃ O ⁺ (a0) ethanoace missing H ₃ O ⁺ (a0) NH ₄ ⁺ (a0) + OH ⁺ (a0) mmonium ions collide with H ₃ O ₄ (a0) + H ₂ O ₁ (0) ethanoate ion set envice from solution as they join up with CH ₃ COO ⁺ (a0) OH ⁺ (a0) ions removed from solution as they join up with CH ₃ CO ⁺ (a0) H ₂ O ₁ (0) + H ₂ O ₁ (0) + H ₃ O ⁺ (a0) ions. H ₃ O ⁺ (a0) + H ₂ O ₁ (0) + H ₃ O ⁺ (a0) + H ₃ O		3		0
102	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3		٢
102	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3		٢
102	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		8	•	0

	I can describe what an acidic and a basic buffer consists of.			
104	TypeDescriptionExampleAcidsalt of weak acidsodium ethanoateBufferdissolved in a weak aciddissolved in ethanoic acidBasicsalt of weak baseammonium chlorideBufferdissolved in a weak basedissolved in ammonia solution	$\overline{\mathbf{O}}$		0
105	Acidic buffers and basic buffers work by the following mechanism: Acid Buffer e.g. sodium ethanoate dissolved in ethanoic acid solution. large concentration Enge concentration Iarge concentration Iarge concentration from weak acid from dissolved salt e.g. ammonium chloride dissolved in ammonia solution. CH ₃ COOH(ac) + H ₂ O(i) CH ₃ COO ⁻ (ac) + H ₃ O ⁺ (ac) ethanoit add molecule water Iarge concentration from dissolved salt When acid is added to buffer: Equilibrium shifts to LEFT as added H ₃ O ⁺ (ac) in added acid join up with ethanoita ion and form ethanoic acid molecules. NH ₃ (ac) + H ₂ O(i) MH ₄ ⁺ (ac) + OH ⁺ (ac) When alkali is added to buffer: Equilibrium shifts to RIGHT as H ₃ O ⁺ (ac) ions are neutralised by the acid and ammonia NH ₃ molecules dissociate into ions to replace OH ⁺ (ac) ions. When alkali is added to buffer: Equilibrium shifts to RIGHT as H ₃ O ⁺ (ac) ions are neutralised by the alkali and ethanoic acid molecules dissociate into ions to replace H ₃ O ⁺ (ac) ions. When alkali is added to buffer:	3	:	٢
106	The approximate pH of a buffer solution is calculated using: e.g. Calculate the pH of a buffer where 3.74g of sodium ethanoate (CH ₃ COONa) is dissolved 0.20mol l ⁻¹ ethanoic acid and the final volume of the buffer is 100cm ³ . gfm CH ₃ COONa = (2x12)+(3x1)+(2x16)+(1x23) = 24+3+32+23 = 82g mol ⁻¹ no. of mol = $\frac{mass}{gfm} = \frac{3.74}{82} = 0.0456 \text{ mol}$ concentration $\frac{no. of mol}{volume} = \frac{0.0456 \text{ mol}}{0.1 \text{ litres}} = 0.456 \text{ mol} \text{ l}^{-1}$ pH = pK _a - log ₁₀ $\frac{[acid]}{[salt]} = 4.76 - log_{10} \frac{0.2}{0.456} = 4.76 - log_{10}(0.439)$ = 4.76 - (-0.358) = 5.12	3	:	٢
107	Indicators are weak acids in which the dissociation can be represented as: $HIn(aq) + H_2O(l) = H_3O^+(aq) + In^-(aq)$	3	☺	\odot
108	The dissociation constant K _{In} for an acid indicator is: $K_{In} = \frac{[H_3O^+][In^-]}{[HIn]}$	6	:	0
109 110 111 112 113	 The colour of an acid indicator is distinctly different from that of its conjugate base. the colour of an indicator is determined by the ratio of [HIn] to [In⁻] the theoretical point at which colour changes is when [H₃O⁺] = K_{In} the colour change is assumed to be distinguished when [HIn] and [In⁻] differ by a factor of 10 the pH range over which a colour change occurs can be estimated by the expression: pH = pK_a ±1 	8	::	٢
114	Suitable indicators can be selected from pH data or titration curves. Which of the following indicators should be used in the titration of aqueous potassium hydroxide solution with aqueous ethanoic acid A. Phenolphthalein (pH range 8.3-10.0) B. Bromothymol blue (pH range 6.0-7.6) C. Methyl Red (pH range 4.2-6.3) D. Methyl Orange (pH range 3.1-4.4) Answer: Potassium hydroxide reacting with ethanoic acid will produce a salt solution with a pH in the alkaline region of the pH scale. Phenolphthalein is the only listed indicator where the colour change pH range is entirely in the alkaline region of the pH scale. Nethyl Red (pH range is entirely in the alkaline region of the pH scale. Nethyl Red (pH range is entirely in the alkaline region of the pH scale. Nethyl Red (pH range is entirely in the alkaline region of the pH scale. Nethyl Red is the only listed indicator Nethyl Red is the only list indicator which is close to this pH range.	8	٢	0

	All Charaistany Dhysical Charaistany		Tra	ffic L	ight		
	AH CNEMISTRY: Physical Chemistry JAB		red	mber	green		
	Section 2D. Reaction Feasibility			a	8		
115	I he standard enthalpy of formation, ΔH_f is defined as the enthalpy change for the formation of one mole of a substance from its elements in their natural state.		$\overline{\mbox{\scriptsize ($)}}$		\odot		
116	Standard state of a substance is its most stable state at a pressure of 1 atmosphere and $\frac{1}{2}$	+	$(\dot{\sim})$	\odot	\odot		
	a specified temperature (usually 298K).	-	\sim	\smile	0		
	$\Lambda \square \square$						
	$\Delta I I = \Delta I I \uparrow (products) - \Delta \Delta I I \uparrow (reactants)$						
	$\Delta H^{\circ} = \Sigma \Delta H^{\circ} f (\text{nonducts}) - \Sigma \Delta H^{\circ} f (\text{nonducts})$						
117	Substance ΔH°_{f} (kJ mol ⁻¹) = (2x-350) + (2x-297) - (2x-206)+(3x0)		\odot	\odot	\odot		
	$\begin{array}{c c} \hline 22113(s) & -200 \\ \hline 02(g) & 0 \\ \hline \end{array} = (-700 - 594) - (-412 - 0) \\ \hline \end{array}$						
	ZnO(s) -350 = -1294 - (-412)						
	$2SO_{2(g)}$ -297 = -882 kJ mol ⁻¹						
	Entropy (S) is a measure of the degree of disorder of a system						
118	• the greater the degree of disorder, the greater the entropy						
119	 solids have lower values of entropy than gases. 						
120	entropy increases as temperature increases there is a large change in entropy at a substance's malting and bailing point		0	Θ	\odot		
121	there is a large change in entropy at a substance's melting and boiling point o no change in temperature as state changes but large increase in						
	entropy/disorder as solids turn into liquids or liquids turn into gas						
122	Second law of thermodynamics states that the total entropy of a reaction system and its		$\overline{\mathbb{C}}$	\odot	\odot		
	surroundings always increases for a spontaneous process.		\bigcirc	\bigcirc	•		
123	the entropy (disorder) of the surroundings.		\sim	\sim			
124	 when heat is absorbed by a reaction system to the surroundings there is a 		\odot	\ominus	\odot		
	decrease in the entropy (disorder) of the surroundings.		_				
125	Third law of thermodynamics states that the entropy of a perfect crystal at 0 K is zero.			\bigcirc	\odot		
126	1atm pressure and 298K		\odot	\bigcirc	\odot		
	I can calculate the change in standard enthalpy of a reaction using:						
	$\Delta S^{\circ} = \sum \Delta S^{\circ}$ (products) - $\sum \Delta S^{\circ}$ (reactants)						
	e.g. calculate ΔS° for the following reaction: $2ZnS(s) + 3O_{2(g)} \rightarrow 2ZnO(s) + 2SO_{2(g)}$						
127	Substance $\Delta S^{\circ} (J K^{-1} \text{ mol}^{-1})$ $\Delta S^{\circ} = \Sigma S^{\circ}_{(\text{products})} - \Sigma \Delta H^{\circ}_{f} (\text{reactants})$		(\mathbf{i})	\odot	\odot		
121	2ZnS(s) 58 = (2x44) + (2x248) - (2x-206)+(3x0)		\bigcirc	\cup	•		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	$\begin{array}{ c c c c c }\hline 2 \text{NO}(s) & 44 \\ \hline 2 \text{SO}_{2}(s) & 248 \\ \hline \end{array} = -147 \text{ J K}^{-1} \text{ mol}^{-1}$						
	L know that the change in free energy for a reaction is related to the enthalpy and entropy						
	changes by:						
	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$						
	Free Energy = Enthalpy Change – Temperature x Entropy Change						
128	$(kJ mol^{-1})$ $(kJ mol^{-1})$ (K) $(kJ K^{-1} mol^{-1})$		(\mathbf{x})	\odot	\odot		
	$AG^{\circ} = AH^{\circ} - T \times AS^{\circ}$		\cup	\smile	0		
	$\Delta G^{\circ} = -882 - 7000 \times \frac{-147}{1000}$						
	$\Delta G^{\circ} = -882 - 5000 \times -0.147$						
	$\Delta G^{\circ} = -882 - (-735)$						
	$\Delta G^{\circ} = -147 \text{ KJ mOl}^{-1}$ Please note: entropy values of ΔS° are usually given in J K ⁻¹ mol ⁻¹ so must be divided by 1000 to get them into kJ K ⁻¹ mol ⁻¹ when using this equation.						
129	When the change in free energy (ΔG°) between reactants and products is negative , a reaction may occur and the reaction is said to be feasible		$\overline{\mbox{\scriptsize ($)}}$	\odot	\odot		
130	A feasible reaction is one that tends towards the products rather than the reactants. This	<u> </u>	(\mathbf{x})	\odot	\odot		
100	does not give any indication of the rate of the reaction.	<u> </u>			9		
131	The standard free energy change for a reaction can be calculated using: $\Lambda C^{\circ} - \Sigma \Lambda C^{\circ}$		$\overline{\mathbf{S}}$	\odot	\odot		
1	$\Delta G = \Delta G$ (products) - ΔG (reactants)			1			

132 135	The feasibility of a chemical re calculated value of the change	ons can be predicted from the				
	When $\Delta G^{\circ} < 0$	When $\Delta G^{\circ} = 0$	When $\Delta G^{\circ`1234567} > 0$	$\overline{\mbox{\scriptsize (i)}}$	\bigcirc	\odot
	Reaction is feasible	Reaction is just feasible (reaction is in equilibrium)	Reaction is not feasible			
133	I can estimate the temperatures at which a reaction may be feasible by considering the range of values of <i>T</i> for which $\Delta G^{\circ} < 0$. e.g. calculate the temperature when the reaction becomes feasible: $2ZnS(s) + 3O_2(g) \rightarrow 2ZnO(s) + 2SO_2(g)$ $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0 \therefore T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{-882 \times 1000 \text{ J mol}^{-1}}{-147 \text{ J K}^{-1} \text{ mol}^{-1}} = 6000 \text{ K}$			$\overline{\mathbf{O}}$		٢
134	Any reaction is feasible if ΔG is negative, even under non-standard conditions			$\overline{\mbox{\scriptsize ($)}}$	\bigcirc	\odot
136	A reversible reaction will proceed spontaneously until the composition is reached where $\Delta G = 0$.			$\overline{\mbox{\scriptsize (s)}}$	\odot	\odot

ALL Chamistry, Dhysical Chamistry				Light
	Section 2c: Kinetics	70	amhar	green
137	Chemical reactions normally depend on the concentration of reactants	6	<u>) (</u>	
138 139	The order of reaction with respect to each reactant can be determined by changing the concentration of each reactant individually. • The order of reaction relates each reacting species to the rate of reaction. For the reaction: A + B + C → D • Each reactant is varied one at a time and the reaction rate is measured:	E	3 6	
140 141 142	The rate equation for a reaction can be written using the individual orders for each reactant. Rate = k [A] ¹ x [B] ⁰ x [C] ² Rate = k [A] x 1 x [C] ² Rate = k [A] x 2 [C] ² The overall rate of a reaction can be determined from the rate equation.	E	3 6	
143	Overall Order = $1 + 0 + 2 = 3$	6	9 6	
144	The order of a reaction can only be determined form experimental data.	6	36	
145	Using the rate equation and data of initial rate in the results table, the value of the rate constant and units of the rate constant can be calculated. • reactants can be zero, first, second or third order Rate = k [A] x [C] ² 2.0 mol l ⁻¹ s ⁻¹ = k [1.0mol l ⁻¹] x [1.0mol l ⁻¹] ² k = $\frac{2.0 \text{ mol } l^{-1} \text{ s}^{-1}}{1.0 \text{mol } l^{-1} \text{ s}^{-1}}$ k = $\frac{2.0 \text{ mol } l^{-1} \text{ s}^{-1}}{1.0 \text{mol}^3 l^{-3}}$ k = $2.0 l^2 \text{ mol}^{-2} \text{ s}^{-1}$	E	3 6) (3)
146	Reactions usually occur by a series of steps called a reaction mechanism. The rate of	Ċ	3 0	
147	Reaction is dependent on the slowest step called the rate determining step. Reaction mechanisms can be worked out from experimentally determined rate equations For reaction: CH ₃ CH ₂ Br + OH ⁻ \rightarrow CH ₃ CH ₂ OH + Br ⁻ Experiments show reactants have order [OH ⁻] ¹ and [CH ₃ CH ₂ Br] ¹ HO ⁻ + H	E	3 0) ()

				Traf	ght	
	AH Chemistry: Organic Chemistry	JAB		pa	ber	sen (
T	Section 3a: Molecular Orbitals	chem		Le	am	816
149 150	I know that VSEPR cannot explain the bonding in all compounds and that mo theory can provide an explanation for more complex molecules. I know that molecular orbits form when atomic orbitals combine and the numb molecular orbitals formed is equal to the number of atomic orbitals that comb	lecular per of ine.		\odot		٢
151 152	I know that the combination of two atomic orbitals results in the formation of a molecular orbital and an antibonding orbital. I know that the bonding molecular orbital encompasses both nuclei.	a bonding		$\overline{\mathbf{O}}$	٢	0
153 154	I know that the attraction of the positively charged nuclei and the negatively charged electrons in the bonding molecular orbital is the basis of bonding between atoms. I know that each molecular orbital can hold a maximum of two electrons.					\odot
155 156 157	I know that in a non-polar covalent bond, the bonding molecular orbital is symmetrical about the midpoint between two atoms. I know that polar covalent bonds result from bonding molecular orbitals that are asymmetric about the midpoint between two atoms. I know that the atom with the greater value for electronegativity has the greater share of the bonding electrons.					\odot
158	I know that ionic compounds are an extreme case of asymmetry, with the bor molecular orbitals being almost entirely located around just one atom, resultir formation of ions.	nding ng in the		(i)		0
159	l can describe sigma (σ) molecular orbitals or sigma bonds.			\odot	\bigcirc	\odot
160	l can describe pi (π) molecular orbitals or pi bonds.			0:)	\bigcirc	\odot
161	I know that the electronic configuration of an isolated carbon atom cannot explain the number of bonds formed by carbon atoms in molecules and that the bonding and shape of molecules of carbon can be explained by hybridisation.			\odot		\odot
162b 163	b I can describe sp ³ hybridisation.			\odot	\odot	(;)
162a 164 165	I can describe sp ² hybridisation. I know that bonding in alkenes can be described in terms of sp ² hybridisation. I know that bonding in alkenes can be described in terms of sp ² hybridisation. I know that bonding in benzene and other aromatics can be described in terms of sp ² hybridisation			\odot		٢
166	I know that bonding in alkynes can be described in terms of sp hybridisation.			\odot	\odot	\odot
167	I can describe the bonding in alkanes, alkenes, aromatics and alkynes in tern (σ) and pi bonds (π) .	ns of sigma		\odot	\bigcirc	\odot
168 169	I know that molecular orbital theory can be used to explain why organic molecolourless or coloured. I know that electrons fill bonding molecular orbitals, leaving higher energy and orbitals unfilled.	cules are		::		0
170	I know that the highest bonding molecular orbital containing electrons is calle highest occupied molecular orbital (HOMO) and the lowest antibonding molec is called the lowest unoccupied molecular orbital (LUMO).	d the cular orbital		\odot		٢
171 172	I know that absorption of electromagnetic energy can cause electrons to be p from HOMO to LUMO. I can explain why most organic molecules are colourless in terms of the energe difference between the HOMO and LUMO.	romoted gy		3		0
173	I know that a chromophore is a group of atoms within a molecule that is responsible absorption of light in the visible region of the spectrum.	onsible for		$\overline{\mathbf{O}}$		\odot
173 174 175	I know that a chromophore is a group of atoms within a molecule that is responsible absorption of light in the visible region of the spectrum. I know that chromophores exist in molecules with a conjugated system and the conjugated system is a system of adjacent unhybridised p orbitals that overla form a molecular orbital across a number of carbon atoms where electrons and delocalised.	onsible for nat a p side-on to re		\odot		\odot
176	I can explain the colours of compounds in terms of energy gap between the H LUMO, and the wavelength of light absorbed.	IOMO and		$\overline{\mbox{\scriptsize (i)}}$	\odot	\odot

							Tra	ffic L	ight
	AH Cher	nistry: (nemistry	JAB chem		red	mber	reen
	In organic reactions.	Section 3	actant molecules	are broken and bo	nds in the produc	t		a	60
177	molecules are formed	d.					$\overline{\mbox{\scriptsize (s)}}$	\bigcirc	\odot
	 the process of Homolytic fission has 	a covalent bor	g is known as bor nd splitting with or	nd fission ne electrons going	to either end of th	e			
	bond to form free rad	licals (each with	a unpaired elect	ron)	na na tha hana d				
179	 TISN-NOOK STYL 	le arrow repres	ents the moveme	nt of one electron f	rom the bond		$\overline{\mbox{\scriptsize (s)}}$	\odot	\odot
1028		H-÷Cl	—→ H' +	Cl					
		\bigcup							
	Heterolytic fission has bond to form a positive	s a covalent bo ve ion and nega	nd splitting with b ative ion.	oth electrons going	g to one end of the	e			
400	Full arrow rep	presents the mo	ovement of a pair	of electrons in a be	ond				
180 182b		H A		H + Br	-		$\overline{\mbox{\scriptsize (s)}}$	\odot	\odot
	Н-	— Č — Br	→ F	I — Ċ⊕					
		Н		н Н					
	Reactions involving h involving homolytic fis	neterolytic fissio ssion	n tend to result in	far fewer products	than reactions				
181	 heterolytic fis 	sion is better s	uited for organic s	synthesis as a resu	lt.		$\overline{\mbox{\scriptsize (s)}}$	\odot	\odot
	 in reactions in nucleophiles 	nvolving hetero or electrophiles	lytic bond fission, 3.	attacking groups a	are classified as				
	Nucleophiles are attra	acted towards a	atoms bearing a p	artial (δ +) or full po	sitive charge.				
184 185	 nucleophiles that are capable of donating an electron pair can form a new covalen bond. 					nt	(3)	\odot	\odot
186	OH-	CN⁻	NH ₃	O in H ₂ O	R⁻				•
	Electrophiles are attra	acted towards a	Molecules with lone pairs	Negatively polarised centres artial (δ -) or full ne	gative charge.				
107	electrophiles that are capable of accepting an electron pair can form a new covalent hand								
107	 electrophiles covalent bond 	that are capab	le of accepting an	electron pair can	form a new		\odot	\odot	\odot
187 188 189	 electrophiles covalent bond H₃O⁺ 	d. SO3	le of accepting an	H in H_2O	R+		8		0
188 189	electrophiles covalent bond H ₃ O ⁺ Positively charged ions	d. SO ₃	le of accepting an	H in H ₂ O	R+ carbocation		8		\odot
188 189	electrophiles covalent bond H ₃ O ⁺ Positively charged ions There are different ch	SO ₃	types shown in t	H in H ₂ O Positively polarised centres the following a che	R+ carbocation mical equations:		8		0
187 188 189	 electrophiles covalent bond H₃O⁺ Positively charged ions There are different ch a) substitution CH4 	nemical reaction + Cl ₂	The of accepting and the of accepting and the of accepting and the of accepting and the offer accepting accepting and the offer accepting acce	$\frac{\text{H in H_2O}}{\text{Positively polarised centres}}$ the following a che eplacing another at CH_3Cl +	mical equations:		8		0
187 188 189	 electrophiles covalent bond H₃O⁺ Positively charged ions There are different ch a) substitution CH4 b) addition: mo 	$\frac{SO_3}{remical reaction}$	types shown in to types shown in to types atom/group re ↓ (across a C=C dou	$\frac{\text{H in H}_2\text{O}}{\frac{\text{Positively polarised centres}}{\text{the following a che}}$ $\frac{\text{Positively polarised centres}}{\text{che}}$	mical equations: om/group HCI iple bond		8		0
188 189	 electrophiles covalent bond H₃O⁺ Positively charged ions There are different ch a) substitution CH4 b) addition: mo C₂H₄ 	$\frac{SO_3}{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	n types shown in t one atom/group re → (across a C=C dou	$\frac{\text{H in H}_2\text{O}}{\frac{\text{Positively polarised centres}}{\text{the following a che}}$ $\frac{\text{Positively polarised centres}}{\text{CH}_3\text{CI}}$ $\frac{\text{Positively polarised centres}}{\text{CH}_3\text{CI}}$ $\frac{\text{Positively polarised centres}}{\text{CH}_3\text{CI}}$	mical equations: com/group HCI iple bond		$\overline{\mathbb{S}}$		0
188 189	 electrophiles covalent bond H₃O⁺ Positively charged ions There are different ch a) substitution CH4 b) addition: mo C₂H₄ c) elimination: 	$\frac{SO_3}{remical reaction}$ $\frac{SO_3}{remical reaction}$ $\frac{FCl_2}{reaction}$ $\frac{FCl_2}{reaction}$ $\frac{FCl_2}{reaction}$ $\frac{FCl_2}{reaction}$	The of accepting and the of accepting and the of accepting and the one atom/group results one atom/group results across a C=C dou across a C=C dou control to the other control	$\frac{\text{H in H_2O}}{\text{Positively polarised centres}}$ the following a che eplacing another at CH_3CI + ble bond or C=C tr 2H_4Br_2 ad a C=C double bo	mical equations: om/group HCI iple bond				0
188 189	 electrophiles covalent bond H₃O⁺ Positively charged ions There are different ch a) substitution CH4 b) addition: mo C₂H₄ c) elimination: C₂H₅OH 	$\frac{SO_3}{I}$ The mical reaction with a reacti	le of accepting an n types shown in t one atom/group re → (across a C=C dou → C ved leaving behir	$\begin{array}{c} \text{H in } \text{H}_2\text{O}\\ \hline \text{Positively polarised centres}\\ \text{the following a che}\\ \text{eplacing another at}\\ \text{CH}_3\text{Cl} +\\ \text{ble bond or } \text{C}=\text{C} \text{ tr}\\ 2\text{H}_4\text{Br}_2\\ \text{id a } \text{C}=\text{C} \text{ double bo}\\ \text{C}_2\text{H}_4 +\\ \end{array}$	R+ <u>carbocation</u> mical equations: om/group HCI iple bond pnd H ₂ O		3		
188 189	• electrophiles covalent bond H ₃ O ⁺ Positively charged ions There are different ch a) substitution CH4 b) addition: mo C ₂ H ₄ c) elimination: C ₂ H ₅ OH d) condensatio	$\frac{SO_3}{SO_3}$ The mical reaction i: reaction with of + Cl ₂ plecule adding a + Br ₂ molecule remo	le of accepting an n types shown in t one atom/group re across a C=C dou → C ved leaving behir → C	electron pair can H in H ₂ O Positively polarised centres the following a che eplacing another at CH ₃ Cl + ble bond or C=C tr ${}^{2}H_{4}Br_{2}$ td a C=C double bo C ₂ H ₄ + a small molecule	$\frac{R^{+}}{Carbocation}$ mical equations: om/group HCI iple bond ond H2O removed at join		8		0
188 189	 electrophiles covalent bond H₃O⁺ Positively charged ions There are different ch a) substitution CH4 b) addition: mo C₂H₄ c) elimination: C₂H₅OH d) condensation CH₃OH + methanol 	$\frac{SO_3}{SO_3}$ The mical reaction with a first capacity of the mical reactity of the mical reactity of the m	ie of accepting an types shown in the pone atom/group re- across a C=C dou C ved leaving behin join together and OH	electron pair can H in H ₂ O Positively polarised centres the following a che eplacing another at CH ₃ Cl + ble bond or C=C tr ${}_{2}H_{4}Br_{2}$ id a C=C double bo $C_{2}H_{4}$ + a small molecule CH ₃ OCOC methyl ethanoate	$\frac{R^{+}}{Carbocation}$ mical equations: om/group HCI iple bond ond H2O removed at join H3 + H2O water]	8		0
188 189	 electrophiles covalent bond H₃O⁺ Positively charged ions There are different ch a) substitution CH4 b) addition: mo C₂H₄ c) elimination: C₂H₅OH d) condensation CH₃OH + methanol e) hydrolysis: r 	$\frac{SO_3}{SO_3}$ The mical reaction with a field of the methan is a fie	ie of accepting an types shown in to one atom/group re across a C=C dou wed leaving behin join together and OH	$\begin{array}{c} \text{H in } H_2O\\ \hline \text{Positively polarised centres}\\ \text{the following a che}\\ \text{eplacing another at}\\ CH_3Cl +\\ \text{ble bond or } C=C \text{ tr}\\ 2H_4Br_2\\ \text{id a } C=C \text{ double bo}\\ C_2H_4 +\\ \text{a small molecule}\\ CH_3OCOC\\ \text{methyl ethanoate}\\ \text{s with small molecule}\\ \end{array}$	$\frac{R^{+}}{Carbocation}$ mical equations: com/group HCI iple bond ond H2O removed at join H3 + H2O water le added at join		8		©
188 189	 electrophiles covalent bond H₃O⁺ Positively charged ions There are different ch a) substitution CH4 b) addition: mo C₂H₄ c) elimination: C₂H₅OH d) condensation CH₃OH + methanol e) hydrolysis: r CH₃OCOCH 	SO_{3} The mical reaction SO_{3} The mical reaction Cl_{2} The mical reaction Cl_{2} The mical reaction Cl_{2} The mical reaction Br_{2} The molecule removes $CH_{3}COC$ The molecules splits $CH_{3} + H_{2}C$	ie of accepting an types shown in the pone atom/group re- across a C=C dou concepting behine types shown in the concepting and types shown in the types shown in the concepting and types shown in the concepting and types shown in the types shown in the concepting and types shown in the types shown in the concepting and types shown in the types shown in the type shown in the typ	$\begin{array}{c} \text{H in } \text{H}_2\text{O} \\ \hline \text{Positively polarised centres} \\ \hline$	$\frac{R^{+}}{carbocation}$ mical equations: om/group HCI iple bond ond H2O removed at join H3 + H2O water le added at join CH3COOH		8		©
188 189 190	 electrophiles covalent bond H₃O⁺ Positively charged ions There are different ch a) substitution CH4 b) addition: mo C₂H₄ c) elimination: C₂H₅OH d) condensation CH₃OH + methanol e) hydrolysis: r CH₃OCOCH methyl ethanoate f) oxidation: in 	nemical reaction BO_3 nemical reaction $reaction with of + Cl2 plecule adding a + Br2 molecule remo on: 2 molecules CH3COC ethanoic acid molecules splits B_3 + H_2Cwaterprease in oxyget$	ie of accepting an types shown in the pone atom/group re- across a C=C dou control control control control types shown in the control control control control types shown in the control control control control control types shown in the control control control control control control control types shown in the control control con	electron pair can H in H ₂ O Positively polarised centres the following a che eplacing another at CH ₃ Cl + ble bond or C=C tr 2H ₄ Br ₂ a C=C double bo C ₂ H ₄ + a small molecule CH ₃ OCOC methyl ethanoate with small molecule CH ₃ OH + methanol o with a loss of ele	$\frac{R^{+}}{Carbocation}$ mical equations: om/group HCI iple bond ond H2O removed at join H3 + H2O water le added at join CH3COOH ethanoic acid ctrons		8		©
188 189 190	 electrophiles covalent bond H₃O⁺ Positively charged ions There are different ch a) substitution CH4 b) addition: mo C₂H₄ c) elimination: C₂H₅OH d) condensation CH₃OH + methanol e) hydrolysis: r CH₃OCOCH methyl ethanoate f) oxidation: in CH₃OH 	nemical reaction BO_3 nemical reaction $+ Cl_2$ plecule adding a $+ Br_2$ molecule remo CH_3COC ethanoic acid molecules splits $3 + H_2C$ water herease in oxyge $+ \frac{1}{2}O_2$	ie of accepting an types shown in the one atom/group re- across a C=C dou wed leaving behin join together and H	electron pair can H in H ₂ O Positively polarised centres the following a che eplacing another at CH ₃ Cl + ble bond or C=C tr 2H4Br ₂ a C=C double bo C ₂ H4 + a small molecule CH ₃ OCOC methyl ethanoate with small molecul CH ₃ OH + methanol o with a loss of ele HCOOH +	$\begin{array}{r} R^+ \\ \hline \\ \hline \\ rearbocation \\ \hline \\ mical equations: \\ com/group \\ HCI \\ \hline \\ iple bond \\ \hline \\ hCl \\ iple bond \\ \hline \\ hCl \\ hcl \\ \hline \\ hcl \\ hcl \\ \hline \\ $		8		©
188 189	 electrophiles covalent bond H₃O⁺ Positively charged ions There are different ch a) substitution CH4 b) addition: mo C₂H4 c) elimination: C₂H₅OH d) condensation CH₃OH + methanol e) hydrolysis: r CH₃OCOCH methyl ethanoate f) oxidation: in CH₃OH methanol 	nemical reaction BO_3 nemical reaction $+ Cl_2$ plecule adding a $+ Br_2$ molecule remo CH_3COC ethanoic acid molecules splits $3 + H_2C$ water horease in oxyge $+ \frac{1}{2}O_2$	ie of accepting an types shown in the one atom/group re- across a C=C dou C ved leaving behin join together and H S into 2 molecules C en : hydrogen rati	electron pair can H in H ₂ O Positively polarised centres the following a che eplacing another at CH ₃ Cl + ble bond or C=C tr 2H4Br ₂ a C=C double bo C ₂ H4 + a small molecule CH ₃ OCOC methyl ethanoate with small molecul CH ₃ OH + methanol o with a loss of ele HCOOH + methanoic acid	$\begin{array}{c} R^+ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\$		8		(i) (i)
188 189 190	 electrophiles covalent bond H₃O⁺ Positively charged ions There are different ch a) substitution CH4 b) addition: mo C₂H₄ c) elimination: C₂H₅OH d) condensation CH₃OH + methanol e) hydrolysis: r CH₃OCOCH methyl ethanoate f) oxidation: in CH₃OH methanol g) reduction: do 	nemical reaction BO_3 nemical reaction $+ Cl_2$ plecule adding a $+ Br_2$ molecule remo CH_3CO_2 ethanoic acid molecules splits $3 + H_2C$ water ncrease in oxyge $+ \frac{1}{2}O_2$	le of accepting an types shown in to one atom/group re across a C=C dou wed leaving behin join together and OH	electron pair can H in H ₂ O Positively polarised centres the following a che eplacing another at CH ₃ Cl + ble bond or C=C tr 2H4Br ₂ Id a C=C double bo C ₂ H4 + a small molecule CH ₃ OCOC methyl ethanoate with small molecule CH ₃ OH + methanol o with a loss of ele HCOOH + methanoic acid tio with a gain of ele	$\frac{R^{+}}{carbocation}$ mical equations: om/group HCI iple bond ond H2O removed at join H3 + H2O water le added at join CH3COOH ethanoic acid ctrons H2O		8		(i) (i)
188 189	 electrophiles covalent bond H₃O⁺ Positively charged ions There are different ch a) substitution CH4 b) addition: mo C₂H₄ c) elimination: C₂H₅OH d) condensation CH₃OH + methanol e) hydrolysis: r CH₃OCOCH methyl ethanoate f) oxidation: in CH₃OH methanol g) reduction: do CH₃COCH₃ 	nemical reaction $\frac{SO_3}{1}$ nemical reaction $+ Cl_2$ $+ Cl_2$ $+ Br_2$ molecule adding a $+ Br_2$ molecule remo CH_3COC CH_3COC CH_3COC add contents CH_3COC add contents add	le of accepting an types shown in the pone atom/group re- across a C=C dou to consecutive ved leaving behine join together and OH	H in H ₂ O Positively polarised centres the following a che eplacing another at CH ₃ Cl + ble bond or C=C tr 2H ₄ Br ₂ id a C=C double bo C ₂ H ₄ + a small molecule CH ₃ OCOC methyl ethanoate with small molecule CH ₃ OH CH ₃ OH	$\begin{array}{c} R^+ \\ \hline \\ \hline \\ \hline \\ removed at join \\ H_2O \\ removed at join \\ H_3 + H_2O \\ \hline \\ removed at join \\ H_3 + H_2O \\ \hline \\ \\ removed at join \\ H_3 + H_2O \\ \hline \\ \\ removed at join \\ H_3 + H_2O \\ \hline \\ \\ removed at join \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		8		©
188 189	 electrophiles covalent bond H₃O⁺ Positively charged ions There are different ch a) substitution CH4 b) addition: mo C₂H4 c) elimination: C₂H5OH d) condensation CH₃OH + methanol e) hydrolysis: r CH₃OCOCH methyl ethanoate f) oxidation: in CH₃OH methanol g) reduction: do CH₃COCH₃ propanone h) neutralisatio 	nemical reaction $\frac{SO_3}{1}$ nemical reaction reaction with of + Cl2 plecule adding a + Br2 molecule remo $1on: 2 moleculesCH_3COC ethanoic acid molecules splits 3 + H_2Cwaterhcrease in oxyge+ \frac{1}{2}O_2ecrease in oxyge+ H2O$	le of accepting an types shown in to one atom/group re- across a C=C dou to construct of the construction across a C=C dou to construct of the construction to construct of the construct of the construct of the construction to construct of the construct of the construction to construct of the construct of the construct of the construction to construct of the construct	H in H ₂ O Positively polarised centres the following a che eplacing another at CH ₃ Cl + ble bond or C=C tr 2H ₄ Br ₂ a a C=C double bo C ₂ H ₄ + a small molecule CH ₃ OCOC methyl ethanoate with small molecule CH ₃ OH CH ₃ OH H ₃ OH H ₃ OH H ₃ OH H ₄ Br ₂ a small molecule C ₂ H ₄ + a small molecule CH ₃ OCOC methyl ethanoate with small molecule CH ₃ OH H ₃ OH H ₂ OH H ₃	$\frac{R^{+}}{carbocation}$ mical equations: om/group HCI iple bond ond H2O removed at join H3 + H2O water le added at join CH3COOH ethanoic acid ctrons H2O ectrons H3 + $\frac{1}{2}O_2$		8		©

animolia rate been lipidated as primary, secondary or tertiary according to the number of alkyl animes and the heritogen atom.animolia rate been be classified as primary, secondary or tertiary according to the number of alkyl animes field in the introgen atom.animolia rate been been been been been been been be	233	Amines are organic derivatives of ammonia in which one or more hydrogen atoms of					\odot
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Amines can be classified as prin	an aikyi group. narv. secondarv or tertiarv a	ccording to the number of alkyl			
$\begin{array}{ c c c c c c } \hline Primary Amines & Secondary Amines & Tertiary Amines \\ \hline Primary Amines & Secondary Amines & Tertiary Amines \\ \hline Primary Amines & Secondary Amines & Tertiary Amines \\ \hline Primary and secondary amines display to the Natorn 1 a Nutranupa attached to the $		groups attached to the nitrogen a	atom.				
234 234 234 234 235 236 237 236 237 236 237 236 237 236 237 237 238 239 239 239 239 239 239 239 239		Primary Amines	Secondary Amines	Tertiary Amines			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		••	••	••			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	224	N ammune e	N annual C	N 9900			\odot
$\begin{array}{ c c c c c c } \hline H & R' & $	234	D H H	₽H	R"	^o	ήΘ	
HR'R'R'1abit groups attached to the Natern1 abit groups attached to the Natern1 abit groups attached to the Natern3 abit groups attached to the Natern3 abit groups attached to the Natern235				R			
The big drouge attached to the N atom 13 alky groups attached to the N atom 235 1 know that amines react with acids to form saits 0.0000000000000000000000000000000000		"н	ΓR'	R'			
1 alwy groups attached to the Nation 1 alwy groups attached to the Nation 1 235 Introve that a mines care with a disk to form salts e.g. CH ₃ NH ₂ + HCI → CH ₃ NH ₃ -CI Primary and secondary amines display hydrogen bonding as they lack the N-H bonds. Tertiary amines display hydrogen bonding as they lack the N-H bonds. • Shorter chain length amines are more soluble in water due to hydrogen bonding as they lack the N-H bond. • Shorter chain length amines are more soluble in water due to hydrogen bonding as they lack the N-H bond. • Shorter chain length amines are more soluble in water due to hydrogen bonding as they lack the N-H bond. • Shorter chain length amines are more soluble in water due to hydrogen bonding as they lack the N-H bond. • Shorter chain length amines are more soluble in water due to hydrogen bonding as they lack the N-H bond. • Shorter chain length amines are more soluble in water due to hydrogen bonding as they lack the N-H bond. • The short chain length amines are more soluble in water due to hydrogen bonding as they lack the N-H bond. • The short chain length amines are more soluble in water due to hydrogen bonding as they lack the N-H bond. • CH ₃ CH ₂ CH ₂ MH ₂ + H ₂ O • CH ₃ CH ₂ MH ₂ + + OH • Other colspan="2">• CH ₃ CH ₂							
 235 How that a limites teact which a label to only a set by contain N-H bonds. Tertitary and secondary amines display hydrogen bonding as they lack the N-H bond. Primary and secondary amines have higher boiling points than isomeric tertiary amines on a to telloplay hydrogen bonding as they lack the N-H bond. Primary and secondary amines have higher boiling points than isomeric tertiary amines on a top and they have the N-H bond. Primary and secondary amines are more soluble in water due to hydrogen bonding as they lack the N-H bond. Primary and secondary amines have higher boiling points than isomeric tertiary amines on a top and to telloplay hydrogen and that the nutrogen atom has a lone pair of electrons which can accept a proton (H-f) from water, producing hydroxide ions. Benzene (CaHa) is the simplest member of the class of aromatic hydrocarbons. Benzene (CaHa) is the simplest member of the class of aromatic hydrocarbons. Benzene (CaHa) is the simplest member of the class of aromatic hydrocarbons. Benzene (CaHa) is the simplest member of the class of aromatic hydrocarbons. Benzene (CaHa) is the simplest member of the class of aromatic hydrocarbons. Benzene (CaHa) is the simplest member of the class of aromatic hydrocarbons. Benzene (CaHa) is the simplest member of the class of aromatic hydrocarbons. Benzene (CaHa) is the simplest member of the class of aromatic hydrocarbons. Benzene (CaHa) is the simplest member of the class of aromatic hydrocarbons. Benzene for a duckute contain sather are the delocalisation of electrons in the conjugated system. Benzene for a duckute contain sather are the delocalised electrons in the conjugated system. Benzene for a duckute contains and hydrogen lie in same plane. Benzene for a duclocalisation. Benzene for a duckute contains an		1 alkyl groups attached to the N atom 2	alkyl groups attached to the N atom	3 alkyl groups attached to the N atom			
Eq. CH3NF3 C1 CH3NF3 C1 Primary and secondary amines display hydrogen bonding as they lack the N-H bond. Fertary amines do not display hydrogen bonding as they lack the N-H bond. 237 Fertary amines do secondary amines are more soluble in water due to hydrogen bonding as they lack the N-H bond. (CH3)SN 238 • shorter chain length amines are more soluble in water due to hydrogen bonding Boling Point 49°C 39°C Amines are weak bases and dissociate to a slight extent in aqueous solution and that the introgen atom has a lone pair of electrons which can accept a proton (H ⁻) from water, producing hydroxide ions. • S • S • .9. NH3 + H2O CH3CH2NH3 ⁺ + OH ⁺ • OH ⁺ 238 CH3CH2NH2 + H2O CH3CH2NH3 ⁺ + OH ⁺ • OH ⁺ • S • S 238 CH3CH2NH2 + H2O CH3CH2NH3 ⁺ + OH ⁺ • OH ⁺ 238 CH3CH2NH2 + H2O CH3CH2NH3 ⁺ + OH ⁺ •	235			N-	Ö)	\odot
Theritary and secondary amines duspay induced by the Unitary and secondary amines duspay induced by the Unitary and secondary amines have higher boiling points than isomeric tertiary amines • primary and secondary amines have higher boiling points than isomeric tertiary amines 236 • shorter chain length amines are more soluble in water due to hydrogen bonding • Shorter chain length amines are more soluble in water due to hydrogen bonding • Shorter chain length amines are more soluble in water due to hydrogen bonding 237 Amines CH3CH2CH2NH2 C2H5NHCH3 (CH3) CH3CH2CH2NH2 Amine Secondary A		e.g. CH3INH2		/ a thay contain N. H handa			
$\begin{array}{c} \begin{array}{c} \mbox{picture of botomary of the logar bound of the builting points that isomeric tertiary amines} \\ \mbox{picture of botomary of the logar bound of the builting points that isomeric tertiary amines} \\ \mbox{picture of botomary of the logar bound of the boling points that isomeric tertiary amine} \\ \mbox{picture of botomary of the logar bound of the boling points that isomeric tertiary amine} \\ picture of botomary of the logar bound of the logar b$		Tertiary amines do not display b	uspiay nyurogen bonding as	s they contain N–n bonds.			
amines • shorter chain length mines are more soluble in water due to hydrogen bonding Amine CH3CH2CH2MH2 C2H5NHCH3 (CH3)3N Type Primary Amine Secondary Amine Tertiary Amine Secondary Amine Tertiary Amine A		 primary and secondary 	amines have higher boiling	points than isomeric tertiary			
 236 shorter chain length amines are more soluble in water due to hydrogen bonding <u>Amine CH₃CH₂CH₂NH₂ C₂H₅NHCH₃ (CH₃)₃N <u>Type Primary Amine Scondary Amine Tertiary Amine</u> <u>Boiling Point 49°C 36°C 3°C</u> </u> Amines are weak bases and dissociate to a sight extent in aqueous solution and that the producing hydroxide ions. e.g. NH₃ + H₂O → NH₄⁺ + OH⁺ CH₃CH₂NH₂+ H₂O → CH₃CH₂NH₃⁺ + OH⁺ e.g. NH₃ + H₂O → CH₃CH₂NH₃⁺ + OH⁺ e.g. NH₃ + H₂O → CH₃CH₂NH₃⁺ + OH⁺ e.g. H₁⁺ + H₂O → CH₃CH₂CH₃H₃⁺ + OH⁺ e.g. H₁⁺ + H₂O → CH₃CH₂CH₃H₃⁺ + OH⁺ e.g. H₁⁺ + H₂O → CH₃CH₂CH₃H₃⁺ + OH⁺ e.g. H₁⁺ + H₂O → CH₃CH₂CH₃H₃⁺ + OH⁺ e.g. CH₃OH₂OH₂ + H₂O → CH₃CH₂CH₃H₃⁺ + OH⁺ e.g. CH₃OH₄ + H₂O → CH₃CH₂CH₃CH₂CH₃ + OH⁺ e.g. CH₃OH₄ + H₂O → CH₃CH₂CH₃CH₂CH₃ + OH⁺ e.g. CH₃OH₄ + H₂O → CH₃CH₂CH₃OH₄ + OH⁺ e.g. CH₄OH₄ + H₂O → CH₃CH₂CH₂OH₄ + OH⁺ e.g. CH₄OH₄ + H₂O → CH₃CH₂CH₂OH₄ + OH⁺ e.g. CH₄OH₄ + H₂O → CH₃CH₂CH₂OH₄ + OH⁺ e.g. CH₄OH₄ + H₄O → CH₄ + H₄O → CH₄ + OH⁺ e.g. CH₄OH₄ + CH₄OH₄ → CH₄ + OH⁺ e.g. CH₄OH₄ + CH₄OH₄ → CH₄ + OH⁺ e.g. CH₄OH₄ + CH₄OH₄ → CH₄ + OH⁺ e.g. CH₄OH₄OH₄ + CH₄ + OH⁺ 		amines	<u> </u>				
237 Amine CH ₃ CH ₂ CH ₂ NH ₂ C ₂ H ₅ NHCH ₃ (CH ₃) ₃ N Type Primary Amine Secondary Amine Tertiary Amine Mass of trud Seg Seq 3e ^o C Amines are weak bases and dissociate to a slight extent in aucousus solution and that the nitrogen atom has a lone pair of electrons which can accept a proton (H ⁺) from water, producing hydroxide ions. e.g. 9.g. NH ₃ + H ₂ O CH ₃ CH ₂ NH ₃ + OH effydamine water CH ₃ CH ₂ NH ₃ + OH effydamine water CH ₃ CH ₂ NH ₃ + OH effydamine water CH ₃ CH ₂ NH ₃ + OH effydamine water CH ₃ CH ₂ NH ₃ + OH effydamine water CH ₃ CH ₂ NH ₃ + OH effydamine water CH ₃ CH ₂ NH ₃ + OH effydamine water CH ₃ CH ₂ NH ₃ + OH effydamine water CH ₃ CH ₂ NH ₃ + OH effydamine water CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ effydamine water CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ eff H ₂ O CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ eff Secondata OH <	236	shorter chain length am	nines are more soluble in wa	ter due to hydrogen bonding	\$		\odot
TypePrimary AmineTertiary AmineMass of tmol59g59g59gBoiling Point49°C36°C3°CAmines are weak bases and dissociate to a slight extent in aqueous solution and that the nitrogen atom has a lone pair of electrons which can accept a proton (H*) from water, producing hydroxide ions. e.g.•.g.238CH ₃ CH ₂ NH ₂ + H ₂ OCH ₃ CH ₂ NH ₃ + OH* ethylamne + waterCH ₃ CH ₂ NH ₃ + OH* ethylamnout in a + hydroide ion the benzene ring has a distinctive structural formula and the stability of the benzene ring has a distinctive structural formula and the stability of the benzene ring is due to the delocalisation of electrons in the conjugated system(C)239Chester of benzene can be described in terms of sp ² hybridiation, sigma bonds, pi bonds and electron delocalisation: Benzene's ring structure contains sp ² the benzene carbons and hybridiasion(C)241Chester of benzene carbons and hybridiasion = 0 and shown are sigma ar-bonds(C)242Chester of benzene carbons and hybridiasion(C)242Chester of benzene carbons and hybridiasion(C)242Chester of benzene carbons and hybridiasion(C)242Chester of benzene carbons and hybridiasion(C)(C)C)(C) <th>231</th> <th>Amine CH₃CH₂C</th> <th>H₂NH₂ C₂H₅NHCH</th> <th>1₃ (CH₃)₃N</th> <th></th> <th></th> <th></th>	231	Amine CH ₃ CH ₂ C	H ₂ NH ₂ C ₂ H ₅ NHCH	1 ₃ (CH ₃) ₃ N			
Mass of Imol59g59g59g39cAntines are weak bases and dissociate to a slight extent in aqueous solution and that the nitrogen atom has a lone pair of electrons which can accept a proton (H*) from water, producing hydroxide ions. e.g.NH3+H2ONH4*+OH*238CH3CH2NH2 + H2O ethylamic + waterCH3CH2NH3* + OH* ethylamic in + hydroxide ionCH3CH2NH3* + OH* ethylamic at waterCH3CH2NH3* + OH* ethylamic at waterCH3CH2NH3* + OH* ethylamic at waterCH3CH2NH3* + OH* ethylamic at waterCH3CH2NH3* + OH* ethylamic at the size		Type Primary A	mine Secondary Ami	ne Tertiary Amine			
Boiling Point 49°C 3°C 3°C 3°C Amines are weak bases and dissociate to a slight extent in aqueous solution and that the introgen atom has a tone pair of electrons which can accept a proton (H ⁺) from water, producing hydroxide ions. • • • • • • • • 238 CH3CH2NH2 + H2O CH3CH2NH3 ⁺ + OH ⁺ • • • 238 CH3CH2NH2 + H2O CH3CH2NH3 ⁺ + OH ⁺ • • • • 238 CH3CH2NH2 + H2O CH3CH2NH3 ⁺ + OH ⁺ • • • • • 239 Benzene (CaH5) is the simplest member of the class of aromatic hydrocarbons. • </th <th></th> <th>Mass of 1mol 59g</th> <th>59g</th> <th>59g</th> <th></th> <th></th> <th></th>		Mass of 1mol 59g	59g	59g			
Amines are weak bases and dissociate to a slight extent in aqueous solution and that the hirtogen atom has a lone pair of electrons which can accept a proton (H*) from water, producing hydroxide ions. e.g. NH ₃ + H ₂ O \longrightarrow NH ₄ ⁺ + OH ⁺ CH ₃ CH ₂ NH ₂ + H ₂ O \longrightarrow CH ₃ CH ₂ NH ₃ ⁺ + OH ⁺ $\stackrel{=}{} \stackrel{=}{} \stackrel$		Boiling Point 49°C	; 36°C	3°C			
$\begin{array}{c} 1 and gen a colume pair or electron is which can accept a product (H') from water, e.g. \\ e.g. \\ \text{ and the end of the electron is the electron is which can accept a product (H') from water, e.g. \\ e.g. \\ \text{ and the end of the electron is the electron is the electron is the end of the electron is the end of the electron is the end of the electron is the electron free is the electron free is there electron is the electron is electron is the electron is the electron is the electron is the electron is there electron is electron is electron is electron is the electr$		Amines are weak bases and dis	sociate to a slight extent in a	aqueous solution and that the			
$\begin{array}{c} \text{e.g.} & \text{NH}_3 & + \text{H}_2\text{O} & \longrightarrow & \text{NH}_4^+ & + \text{OH}^+ \\ \text{238} & \text{CH}_3\text{CH}_2\text{NH}_2 + \text{H}_2\text{O} & \bigoplus & \text{CH}_3\text{CH}_2\text{NH}_3^+ + \text{OH}^+ \\ & \text{ethylamine} & + \text{water} & \text{ethylamonium ion} & + \text{hydroxide ion} \\ & & \text{H} & \stackrel{+}{\longrightarrow} & \stackrel{+}{\longrightarrow} & \bigoplus & \stackrel{+}{\longrightarrow} & \text{OH}^+ \\ & & \text{H} & \stackrel{+}{\longrightarrow} & \stackrel{+}{\longrightarrow} & \bigoplus & \stackrel{+}{\longrightarrow} & \text{OH}^+ \\ & & \text{H} & \stackrel{+}{\longrightarrow} & \stackrel{+}{\longrightarrow} & \bigoplus & \stackrel{+}{\longrightarrow} & \text{OH}^+ \\ & & \text{H} & \stackrel{+}{\longrightarrow} & \stackrel{+}{\longrightarrow} & \bigoplus & \stackrel{+}{\longrightarrow} & \text{OH}^+ \\ & & \text{H} & \stackrel{+}{\longrightarrow} & \stackrel{+}{\longrightarrow} & \bigoplus & \stackrel{+}{\longrightarrow} & \stackrel{+}{\longrightarrow} & \text{OH}^+ \\ & & \text{H} & \stackrel{+}{\longrightarrow} & \stackrel{+}{\longrightarrow} & \stackrel{+}{\longrightarrow} & \stackrel{+}{\longrightarrow} & \stackrel{+}{\longrightarrow} & \stackrel{+}{\longrightarrow} & \text{OH}^+ \\ & & \text{H} & \stackrel{+}{\longrightarrow} &$		producing hydroxide ions	electrons which can accept	a proton (n') from water,			
$\begin{array}{c} 133 \\ 1238 \\ 238 \\ 238 \\ 238 \\ 238 \\ 238 \\ 238 \\ 238 \\ 238 \\ 238 \\ 239 \\ 240 \\ 241 \\ 241 \\ 241 \\ 241 \\ 242 $		e.a.					
238 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $		$NH_2 + H_2C$) 🛁 NH.	₄+ + OH ⁻			
238 $CH_3CH_2NH_2 + H_2O$ ethylamine + water $CH_3CH_2NH_3^+ + OH^+$ ethylaminoim ion + hydroxide ion + hydroxide ion 							
$\begin{array}{c} \textbf{CH}_{3}\textbf{CH}_{2}\textbf{CH}_{2}\textbf{H}_{2}\textbf{H}_{2}\textbf{H}_{2}\textbf{H}_{2}\textbf{H}_{2}\textbf{H}_{2}\textbf{H}_{3}\textbf{H}_{4} \textbf{H}_{4} H$	238				(\mathbf{r})		\odot
$\frac{\operatorname{entylamine} + \operatorname{water}}{\operatorname{H} + \operatorname{H} + \operatorname{H}} \qquad $		$CH_3CH_2NH_2 + H_2C$		2INH 3 + OH			•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ethylamine + water	r ethylammon	ium ion + hydroxide ion			
H + H + H + H + H + H + H + H + H + H +		N. H.	H				
239 Benzene (C ₆ H ₆) is the simplest member of the class of aromatic hydrocarbons. 239 • benzene ring has a distinctive structural formula and the stability of the benzene ring is due to the delocalisation of electrons in the conjugated system • benzene does not take part in addition reactions as there are no C=C double bonds in the structure due to the 6 delocalised electrons • electrons in unhybridised electrons 240 • benzene does not take part in addition reactions as there are no C=C double bonds in the structure due to the 6 delocalised electrons • electrons 241 • benzene can be described in terms of sp ² hybridiation, sigma bonds, pi bonds and electron delocalisation: • electrons in unhybridised p-orbitals form π- not involved in sigma bonds are for anne plane • electrons form 2 electron rings 242 • Or angle between carbons and hydrogens • electron repulsion between delocalised electrons in glapomie six unhybridised p-orbitals form π- to involved in remaining six unhybridised p-orbitals form repulsion between delocalised electron rings • electron rings 242 • Or angle between carbons and hydrogens • electron repulsion between delocalised electrons in the glapomie wid dawn in diagram, six unhybridised p-orbitals form π- bonds • electron rings form 2 electron rings 242 • H ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←		H H + 0		+ OH-			
239 240 241 Benzene (CeHe) is the simplest member of the class of aromatic hydrocarbons. • benzene ring has a distinctive structural formula and the stability of the benzene ring is due to the delocalisation of electrons in the conjugated system • benzene does not take part in addition reactions as there are no C=C double bonds in the structure due to the 6 delocalised electrons • benzene does not take part in addition reactions as there are no C=C double bonds in the structure due to the 6 delocalised electrons • benzene does not take part in addition reactions as there are no C=C 241 The structure of benzene can be described in terms of sp ² hybridiation, sigma bonds, pi bonds and electron delocalisation: • electrons in unhybridised p-orbitals form π- bonds • electrons in unhybridised p-orbitals form π- bonds 8 • all co-bonds • electron rings • stability of benzene from clouds of electron rings flatten benzene structure so carbon ring becomes planar • electron rings flatten benzene structure so carbon ring becomes planar		CH ₂ CH ₃ H	H				
 Benzene (Certe) Is the simplest member of the class of aromatic hydrocarbons. benzene ring has a distinctive structural formula and the stability of the benzene ring is due to the delocalisation of electrons in the conjugated system benzene does not take part in addition reactions as there are no C=C double bonds in the structure due to the 6 delocalised electrons The structure of benzene can be described in terms of sp² hybridiation, sigma bonds, pi bonds and electron delocalisation: Benzene's ring structure contains sp² 6 electrons 6 electrons and 6 hydrogen lie in same plane 120° angle between carbons and hydrogens all bonds shown are sigma σ-bonds H = C = C = C = C = C = C = C = C = C =			C C		├── ├──	_	
 benzene ring has a distinctive structura formula and the stability of the benzene ring is due to the delocalisation of electrons in the conjugated system benzene does not take part in addition reactions as there are no C=C double bonds in the structure due to the 6 delocalised electrons The structure of benzene can be described in terms of sp² hybridiation, sigma bonds, pi bonds and electron delocalisation: Benzene's ring structure contains sp² not involved in sigma bonds are found in remaining six unhybridised p-orbitals form π-bonds 6 carbons and 6 hydrogen lie in same plane 120° angle between carbons and hydrogens all bonds shown are sigma σ-bonds H = C = C = C = C = C = C = C = C = C =		Benzene (C_6H_6) is the simplest i	member of the class of aron	natic hydrocarbons.			
 240 conjugated system benzene does not take part in addition reactions as there are no C=C double bonds in the structure due to the 6 delocalised electrons The structure of benzene can be described in terms of sp² hybridiation, sigma bonds, pi bonds and electron delocalisation: Benzene's ring structure contains sp² not involved in sigma bonds are found in remaining is unhybridised p-orbitals form π-bonds 6 carbons and 6 hydrogen lie in same plane 120° angle between carbons and hydrogens is unhybridised p-orbitals 120° angle between carbons and hydrogens so and bonds shown are sigma σ-bonds all bonds shown are sigma σ-bonds H - C - C + C + H all σ - bonds + H Widrogens not drawn in diagram H - C - C + C + H all σ - bonds + H C - C - C - C + H all σ - bonds + H 	239	 benzene ring has a dis the benzene ring is due 	stinctive structural formula al	nd the stability of			
 241 benzene does not take part in addition reactions as there are no C=C double bonds in the structure due to the 6 delocalised electrons The structure of benzene can be described in terms of sp² hybridiation, sigma bonds, pi bonds and electron delocalisation: Benzene's ring structure contains sp² hybridisation 6 carbons and 6 hydrogen lie in same plane 120° angle between carbons and hydrogens all bonds shown are sigma σ-bonds Importing the determine the determine diagram Find the determine diagram Importing the determine diagram electron ring becomes planar electron ring flatten benzene structure so carbon ring becomes planar electron ring becomes planar electron ring becomes planar Import to the determine diagram electron ring becomes planar Import to the determine diagram electron ring becomes planar <li< th=""><th>240</th><th>conjugated system</th><th></th><th></th><th>Ö</th><th></th><th>\odot</th></li<>	240	conjugated system			Ö		\odot
242 double bonds in the structure due to the 6 delocalised electrons 242 The structure of benzene can be described in terms of sp ² hybridiation, sigma bonds, pi bonds and electron delocalisation: Benzene's ring structure contains sp ² hybridisation 6 electrons in unhybridised p-orbitals form π-bonds • 6 carbons and 6 hydrogen lie in same plane • 120° angle between carbons and hydrogens • 120° angle between carbons and hydrogens • all bonds shown are sigma σ-bonds • all bonds shown are sigma σ-bonds (**) • H ⊂ ⊂ ⊂ ← ⊂ ← ← ← ← ← ← ← ← ← ← ← ← ← ←	241	 benzene does not take 	e part in addition reactions a	s there are no C=C			
 242 The structure of benzene can be described in terms of sp² hybridiation, sigma bonds, pi bonds and electron delocalisation: Benzene's ring structure contains sp² hybridisation 6 electrons in unhybridised p-orbitals form π-bonds 6 carbons and 6 hydrogen lie in sigma bonds are found in remaining six unhybridised p-orbitals 120° angle between carbons and hydrogens all bonds shown are sigma σ-bonds H - C + C + H + all σ - bonds + H indication - bonds + H 		double bonds in the st	ructure due to the 6 delocali	sed electrons			
 The structure of benzene can be described in terms of sp² hybridiation, sigma bonds, pi bonds and electron delocalisation: Benzene's ring structure contains sp² hybridisation 6 carbons and 6 hydrogen lie in same plane 120° angle between carbons and hydrogens all bonds shown are sigma σ-bonds the control of the sigma bonds are found in remaining six unhybridised p-orbitals the detrons form 2 electron rings the detrons form 2 electrons form 2 electron rings the detrons form 2 electrons 2 electrons 2 electrons 2 electrons electrons 2 electrons 2 electrons 2 electrons electrons 2							
 The structure of benzene can be described in terms of sp² hybridiation, sigma bonds, pi bonds and electron delocalisation: Benzene's ring structure contains sp² hybridisation 6 carbons and 6 hydrogen lie in same plane 120° angle between carbons and hydrogens all bonds shown are sigma σ-bonds H - C - C + (+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (- + (+ (- + (+ (- + (+ (- (- + (- (- + (- + (- (- + (- (- + (- + (- (- + (- (- + (- (- + (- (- (- + (- (- (- (- (- (- (- (- (- (- (- (- (-							
 bonds and electron delocalisation: Benzene's ring structure contains sp² hybridisation 6 carbons and 6 hydrogen lie in same plane 120° angle between carbons and hydrogens all bonds shown are sigma σ-bonds H-CCCCCCCCC H all σ-bonds H Gelectrons and drawn in diagram CoccCCCCCCC Gelectrons are described as delocalised 6 electrons form 2 electron rings stability of benzene from clouds of delocalised electrons electron repulsion between delocalised electron rings flatten benzene structure so carbon ring becomes planar CoccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		The structure of benzene can be	e described in terms of sn ² h	whridiation sigma bonds of			
 Benzene's ring structure contains sp² hybridisation 6 carbons and 6 hydrogen lie in same plane 120° angle between carbons and hydrogens all bonds shown are sigma σ-bonds H - C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + H all σ - bonds + C - C + C - C + H all σ - bonds + C - C + C - C + H all σ - bonds + C - C + C - C + H all σ - bonds + C - C + C + H all σ - bonds + C - C + C - C + C + H all σ - bonds + C - C + C + C + C + H all σ - bonds + C - C + C + C + C + C + C + C + C + C		bonds and electron delocalisatio)n:				
hybridisation • 6 carbons and 6 hydrogen lie in same plane • 120° angle between carbons and hydrogens • all bonds shown are sigma σ -bondsnot involved in sigma bonds are found in remaining six unhybridised p-orbitalsbonds • electrons are described as delocalised • 6 electrons form 2 electron rings • stability of benzene from clouds of delocalised electrons • electron repulsion between delocalised electron rings flatten benzene structure so carbon ring becomes planar (π) (π) (π) 242 $H - C - C + H + A = 0$ (π)		Benzene's ring structure contains sp ²	6 electrons 6 electrons i	n unhybridised p-orbitals form π –			
 242 all bonds shown are sigma σ-bonds H - C - C + H all σ - bonds + al		hybridisation	not involved in bonds sigma bonds are	are described as delocalised			
 120° angle between carbons and hydrogens all bonds shown are sigma σ-bonds H - C - C + H all σ - bonds + H Six unhybridised p-orbitals thydrogens not drawn in diagram stability of benzene from clouds of delocalised electrons electron repulsion between delocalised electrons electron rings flatten benzene structure so carbon ring becomes planar The comparison of the comparison of		same plane	found in remaining • 6 electro	ns form 2 electron rings			
242 hydrogens • all bonds shown are sigma σ -bonds H - C - C + H all σ - bonds + $(hydrogens not drawn in diagram)$ H - C - C + H all σ - bonds + $(hydrogens not drawn in diagram)$ • electron repulsion between delocalised electron rings flatten benzene structure so carbon ring becomes planar (hydrogens not drawn in diagram) • electron rings flatten benzene structure so carbon ring becomes planar (hydrogens not drawn in diagram) • electron repulsion between delocalised electron rings flatten benzene structure so carbon ring becomes planar (hydrogens not drawn in diagram) • electron repulsion between delocalised electron rings flatten benzene structure so carbon ring becomes planar (hydrogens not drawn in diagram) • electron repulsion between delocalised electron rings flatten benzene structure so carbon ring becomes planar (hydrogens not drawn in diagram) • electron repulsion between delocalised electron rings flatten benzene structure so carbon ring becomes planar (hydrogens not drawn in diagram) • electron repulsion between delocalised electron rings flatten benzene structure so carbon ring becomes planar (hydrogens hydrogens hy		 120° angle between carbons and 	six unhybridised • stability of the stab	of benzene from clouds of			
• all bonds shown are sigma σ -bonds $H - C - C + H + C - C + H + All \sigma - bonds + H$	242	hydrogens	• electron	repulsion between delocalised	6)	\odot
H - C - C + C - H = C - C - C - C - C - C - C - C - C - C		• all bonds shown are sigma σ -bonds ((nydrogens not drawn in diagram) electron	rings flatten benzene structure so		-	
H = C = C = C = C = C = C = C = C = C =		His at					
H all σ - bonds H							
$H'_{all \sigma-bonds}H$ V V V T		<i>c c c</i>		E			
μ v v π-bonds		H all σ - bonds H	U () () U .				
			V V	π -bonds			

					Tra	ffic L	ight
	AH Chem	listry: Orga	nic Chemistr	y jab	σ	ber	en
	Se	ection 3c: Stereod	chemistry	chem	rē	amk	gre
2/0	Isomers are molecules	with the same molecu	ular formula but different s	tructural formulae.			
250	• structural isomers occur when atoms are bonded together in a different order in			different order in	6	\square	\odot
	each isomer.	then the order of the h	onding in the atoms is the	same but the			-
251	spatial arrangement of	the atoms is different	in each isomer.		$\overline{\mathfrak{S}}$	\odot	\odot
292	There are two types of	stereoisomer: a) geo	ometric b) optical.	-			
	Geometric isomers occ	cur when there is restri	icted rotation around a C=	C double bond.			
	 two different groups attached to each carbon atom that makes up the C=C bond CIS isomer if both groups are on the SAME side of C=C 						
253a	o TRAN	S isomer if both group	s are on the SAME side o	f C=C			
254a		trans-but-2-ene	cis-but-2-ene		$\overline{\mathbf{S}}$	\odot	\odot
255a	H	l₃C JH	H ₃ C CH ₃				
)C = C	C = C				
		H′ `CH₃	H \H				
	Geometric isomers occ	cur when there is restr	icted rotation around a car	rbon-carbon single			
	bond in a cyclic compo	ound.	a carbon atom that makes	up the C. C hand			
		isomer as both grou	ps are on the SAME side	of restricted C–C			
	bond i	n the ring structure					
253b	o TRAN bondi	S isomer as both grou	ps are on the SAME side	of restricted C–C		_	_
254b	bondin				Θ	\odot	\odot
2550	trans-1,2	-dibromocyclopropane	cis-1,2-dibromocyclopro	opane			
		НН	HH				
	1	Sr C H	Br C Br				
		C = C	C - C				
	Coometrie isomere hav		H H	und bailing points			
	Geomet	ric Isomer Melting I	Point (°C) Boiling Point	(°C)			
	cis-bu	it-2-ene -1	39 +4				
256		out-2-ene -1	06 +1		Ö	\square	\odot
	e.a. cis-but-2-enedioic	acid undergoes dehvo	dration reactions but trans	-but-2-enedioic			
	acid as in the trans iso	mer the carboxyl grou	ps are pointing away from	each other			
257	Optical isomers occur	in compounds which h	ave four different groups a	arranged		\odot	\odot
259	optical isomers	s can be described as	enantiomers.	ue).	\circ		\bigcirc
	Optical isomers are as	ymmetric, non-superin	nposable mirror images of	each other.			
	Non-superimposat	ole Mirror Images	Non-superimposable A	<u>Airror Images</u>			
	other and are therefore	mirror images of eacn are optical isomers	and X are in the same positio	ners as Groups W In but Groups Y and			
	(enantiomers)		Z are in different position.				
	Ŵ	W	Ŵ	Ŵ			
258					Ö	\square	\odot
	CunZ	7C	Cun7	Cany			
	X- –	2 ^	X – X				
	▼y	y 🗸	∀	Z			
	Optical isomers have i	dentical physical prope	erties except for their effect	ct on plane-			
260	polarised light.	oro onticelly setting -	o those relations and the state	ad light by the			
261	 optical isomers same amount 	s are optically active as but in opposite directic	s mey rotate plane-polaris	sed light by the		\square	\odot
262	Optical isomers have i	dentical chemical prop	erties, except when in a c	hiral environment			
	such as that found in b	iological systems whe	re only one optical isomer	is usually present.			
263	rotational effect	t of the plane-polarised	light cancels out and called	a racemic mixture.			\odot

			Trat	ffic Li	ight
	AH Chemistry: Inorganic Chemistry JAB		ed	her	een
T	Section 3d: Experimental Determination of Structure		2	an	20
264 265	I know that elemental microanalysis is used to determine the masses of C, H, O, S and N in a sample of an organic compound in order to determine its empirical formula. I know that an empirical formula shows the simplest ratio of the elements in a molecule.		$\overline{\mathbf{O}}$:	\odot
266 267	 I can determine an empirical formula from elemental microanalysis data. I know that elemental microanalysis can be determined from: combustion product masses 		6	☺	\odot
268	percentage product by mass I know that mass spectrometry can be used to determine the accurate gram formula		$(\dot{\cdot})$	\odot	\odot
	mass (GFM) and structural features of an organic compound.		\bigcirc	$\overline{}$	
269 270	high-energy electrons and this removes electrons from the organic molecule generating positively charged molecular ions known as parent ions. I know that the molecular ions then break into smaller positively charged ion fragments and a mass spectrum is obtained showing a plot of the relative abundance of the ions detected against the mass-to-charge (m/z) ratio.		3	:	0
281	I can use mass-to-charge ratio of the parent ion to determine the GFM of the molecular ion, and determine a molecular formula using the empirical formula.		\odot	0	0
282	I know that the fragmentation data from mass spectrometry can be interpreted to gain structural information.		0	Θ	
283 284	I know that Infrared spectroscopy is used to identify certain functional groups in an organic compound. I know that when infrared radiation is absorbed by organic compounds, bonds within the molecule vibrate (stretch and bend) and the wavelengths of infrared radiation that are absorbed depend on the type of atoms that make up the bond and the strength of the bond.		::	:	©
285 286 287	I know that in infrared spectroscopy, infrared radiation is passed through a sample of the organic compound and then into a detector that measures the intensity of the transmitted radiation at different wavelengths. I know that the absorbance of infrared radiation is measured in wavenumbers, the reciprocal of wavelength, in units of cm ⁻¹ . I know characteristic absorptions by particular vibrations are given in the data booklet.		0:	(;)	0
288	I can interpret infrared spectra.		\odot	\odot	\odot
289	I know that proton nuclear magnetic resonance spectroscopy (proton NMR or ¹ H NMR) can give information about the different chemical environments of hydrogen atoms (protons or ¹ H) in an organic molecule, and about how many hydrogen atoms there are in each of these environments.		<u>()</u>	:	©
291 292 293 294	I know that In a ¹ H NMR spectrum the chemical shift, δ , (peak position) is related to the environment of the ¹ H atom and is measured in parts per million (ppm). I know that chemical shift values for ¹ H in different chemical environments are given in the data booklet I know that the area under the peak is related to the number of ¹ H atoms in that environment and is often given by an integration curve on a spectrum. I know that the height of an integration curve is proportional to the number of ¹ H atoms in that environment, and so a ratio of ¹ H atoms in each environment can be determined.		\odot		:
295	I know that the standard reference substance used in ¹ H NMR spectroscopy is tetramethylsilane (TMS), which is assigned a chemical shift value equal to zero.		$\overline{\ensuremath{\mathfrak{S}}}$	\bigcirc	\odot
296 297	I know that ¹ H NMR spectra can be obtained using low-resolution or high-resolution NMR. NMR. I know that high-resolution ¹ H NMR uses higher radio frequencies than those used in low-resolution ¹ H NMR and provides more detailed spectra.		\odot		:
298 299	I know that in a high-resolution ¹ H NMR an interaction with ¹ H atoms on neighbouring carbon atoms can result in the splitting of peaks into multiplets. I know that the number of ¹ H atoms on neighbouring carbon atoms will determine the number of peaks within a multiplet and can be determined using the n+1 rule, where n is the number of ¹ H atoms on the neighbouring carbon atom.		\odot		\odot
300	I can analyse low- and high-resolution ¹ H NMR spectra, and can sketch low-resolution ¹ H NMR spectra for any given compound.		$\overline{\mbox{\scriptsize ($)}}$	\bigcirc	\odot

	All Chamistry / Deceenabing Chamistry /		Tra	fic L	ight
	Section 4b: Skills Involved in Practical Work		red	amber	green
	Data can be tabulated using appropriate headings and units of measurement Data can be represented as a scatter graph with suitable scales and labels. A straight or curved line of best fit can be drawn to represent the trend observed in the data.				
313a 313b 313c	Time (minutes) Volume of Gas (cm ³) 0 0 5 14 10 28 15 44 20 58 25 65 30 68 35 70		8		0
	3.3 7.0 40 70 Time (minutes) Time (minutes) Average (mean) values can be calculated from raw data. The first (rough) titre should be excluded from the calculation of the average value Roque points should be identified and eliminated from calculation of the averages				
313d 313e	Start Volume Final Volume Change in Volume Titration Start Volume Final Volume Change in Volume Average Volume $\frac{10.3 + 10.5}{2}$ $=$ $\frac{20.8}{2}$ $=$ 10.4 cm^3 1 0.0 11.4 11.4 11.4 10.3 cm^3 21.7 36.2 14.5 4 36.2 14.5 4 36.2 10.5 4 10.5 10.5		8		0
	The relative accuracy of apparatus used to measure the volume of liquids can be commented on:				
313f	Beaker Measuring Cylinder Pipette Burette Beakers are of little use in measuring the volume of liquids accurately and only provide a rough guide to the volume. Measuring Cylinders have often used to measuring volumes and the accuracy is ±0.5cm³ (i.e. half the smallest division on the measuring cylinder) Pipettes (used with a pipette filler) give much more accurate volumes than measuring cylinders with accuracy like ±0.06cm³ typical in a 25cm³ pipette. Burettes accurate used for measuring non-standard volumes of liquid but are not as accurate as a pipette as the error from the top reading is added to the error at the bottom reading of the scale.		8	:	0
313g	The reproducibility of results where measurements have been made can be commented on: Accurate Precise Precise Precise Accurate Precise Prec		$\overline{\mathbf{O}}$		0
313h	Quantitative stoichiometric calculations can be performed: n o. of mol thiosulphate = volume x concentration = $0.0205 \times 0.10 = 0.00205 \text{ mol}$ $2S_2O_3^{2^-} + I_2 \longrightarrow 2I^- + S_4O_6^{2^-}$ $2mol \qquad 1mol \\ 0.00205mol \qquad 0.001025mol$ $CIO^- + 2I^- + 2H^+ \longrightarrow I_2 + CI^- + H_2O$ $1mol \qquad 0.001025mol \qquad 0.001025mol$ $0.001025mol \qquad 0.001025mol \qquad 0.001025mol$ n o. of mol of CIO ⁻ ions in 25cm ³ of solution = 0.001025mol		8		0
	n o. of mol of CIO ⁻ ions in 250cm ³ of solution = 0.01025mol c oncentration = $\frac{$ n o. of mol}{ volume } = \frac{0.01025 \text{ mol}}{0.010 \text{ litres}} = 1.025 \text{mol l}^{-1}	<u> </u>			
313i	Mass Spectrometry (Section 3d Outcomes 269-282) IR Spectroscopy (Section 3d Outcomes 283-288) Proton NMR Spectroscopy (Section 3d Outcomes 289-300) Absorption Spectroscopy (Section 1a Outcomes 17-18)	1	$\overline{\mbox{\scriptsize ($)}}$		\odot
313j	 A control experiment can be completed in a practical validate a technique or procedure as accurate. e.g. In the quantitative analysis of vitamin C in orange juice the accuracy of the measurement of vitamin C in orange juice can be checked by using a pure vitamin C solution known concentration. repeat the practical to check the concentration calculated in the practical is accurate against the known concentration of the control experiment. 		8		0

	All Character v Deceardainer Character v	Tra	ffic Li	ight
	AH CNEMISTRY: Researching Chemistry JAB Section 3c: Stoichiometric Calculations	red	amber	green
∎ 314 315	Stoichiometry is the study of mole relationships involved in chemical reactions. • Chemical equations can be written and balanced • State symbols used for solid (s), liquid (l), gas (g) and aqueous (aq) • Mole ratios can be used to work out quantities of other reactants or products $CaCO_3(s) + 2HCI_{(aq)} \rightarrow CaCI_{2(aq)} + H_2O(l) + CO_2(g)$ 1mol 2mol 0.1mol 0.2mol	8	:	0
316b 316c 316d 320d	For solutions, the number of moles, the volume of solution or the concentration of a solution can be calculated from the other quantities. Calculate the number of moles of solute dissolved in 200cm ³ of 0.1 mol l ⁻¹ solution. $n = V \times C$ $= 0.2$ litres $\times 0.1$ mol l ⁻¹ $= 0.02$ mol l^{-1} $Calculate the concentration of solution. n = 0.5 \text{mol} V = 0.4 litres C = ?C = \frac{n}{V} = \frac{0.5}{0.4} = 1.25 \text{ mol} l-1 V = \frac{n}{C} = \frac{0.1}{0.02} = 5 \text{ mol} l-1$	3	:	٢
320a	Gram formula mass (GFM) is calculated from the formula and Relative Atomic Mass: e.g.: Calculate the gfm of calcium nitrate: gfm Ca(NO ₃) ₂ = (1x40.1) + (2x14) + (6x16) = 40.1 + 28 + 96 = 164.1 g mol ⁻¹	3		\odot
320b 320c	Calculations turning masses into number of moles (and vice versa) require the gfm: Calculate the number of moles in 0.328g of calcium nitrate? gfm Ca(NO ₃) ₂ =164.1g mol ⁻¹ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{0.328}{164.1} = 0.002 \text{mol}$ Mass = no. of mol x gfm = 0.05 x 164.1 = 8.21g	⊗	:	٢
316a	$ \begin{array}{c c} \hline \text{The mass of solute in solutions can be calculated.} \\ e.g. calculate the mass of sodium oxide dissolved in 200cm^3 or 0.025mol l^{-1} solution. \\ gfm Na_2O = (2x23) + (1x16) \\ = 46 + 16 \\ = 62g \text{ mol}^{-1} \end{array} \begin{array}{c c} n = ? & V = 0.2 \text{ litres } C = 0.025 \text{mol } l^{-1} \\ n = V & x & C \\ = 0.2 \text{ litres } x \ 0.025 \text{ mol } l^{-1} \\ = 0.05 \text{ mol} \end{array} \begin{array}{c c} m = mass (g) \\ n = number of moles (mol) \\ n = gfm \\ gfm = gram formula mass (g mol^{-1}) \\ m = ? & n = 0.5 \text{mol} \\ gfm = n & x & gfm \\ = 0.05 \text{ mol} & l^{-1} \\ = 3.1g \end{array} $	8		٢
317	 Percentage by mass is the mass of solute made up to 100 cm³ of solution. a 1% starch indicator solution contains 1g of starch dissolved deionised water and the solution made up to 100cm³ with deionised water. 	3	٢	\odot
318	 Percentage by volume is the number of cm³ of solute made up to 100 cm³ of solution. A 10% ethanol solution contains 10cm³ of ethanol and the solution made up to 100cm³ with deionised water 	\odot	:	\odot
319	The unit ppm stands for parts per million and refers to 1 mg per kg or 1 mg per litre. The steel from a sword blade of mass 1300 g was found to have a vanadium concentration of 71 ppm. Calculate the total mass of vanadium present in the sword blade. An adrenaline dose contains 0.3 cm³ of 500 ppm adrenaline solution. Calculate the mass of adrenaline, in mg, delivered in one dose. 71ppm = 71mg Vanadium in 1kg steel 500ppm = 500mg per litre 1kg steel contains 71mg Vanadium 1 litre contains 500mg adrenaline 1300g steel contains 71mg Vanadium x ¹³⁰⁰ / ₁₀₀₀ 0.3cm³ contains 500mg adrenaline x ^{0.3} / ₁₀₀₀ 92.3mg Vanadium 1 stop adrenaline	8		\odot
320e	Calculations using volumes of gases include:Calculate the final volume and composition when 10cm³ of butane gas is completely burned in 100cm³ of oxygen.Calculate the volume of carbon dioxide formed when 2g of calcium carbonate is reacted with excess hydrochloric acid. Molar volume = 24litresAll measurements made at the same temperature and pressure.Calculate the volume of carbon dioxide formed when 2g of calcium carbonate is reacted with excess hydrochloric acid. Molar volume = 24litresC4H10(g) + $6\frac{1}{2}O_{2(g)} \rightarrow 4CO_{2(g)} + 5H_2O_{1(l)}$ gfm CaCO ₃ = (1x40.1)+(1x12)+(3x16) = 100.1g no. of mol = $\frac{mass}{gfm} = \frac{2}{100.1} = 0.02 \text{mol}$ 10cm³ $65cm³$ $40cm³$ $10cm³$ $65cm³$ $40cm³$ $10cm³$ $65cm³$ $40cm³$ $10cm³$ $65cm³$ $40cm³$ $10cm³$ $65cm³$ $40cm³$ $0.02mol$	8		٢

320f	Calculations can be do e.g. Calculate the read when 6g of calcium ca gfm CaCO ₃ = (1x40.1)+(n o. of mol = $\frac{\text{mass}}{\text{gfm}}$ = C 0.060mol of CaCO ₃ ne available \therefore HCl is	the imiting factor and interest of the limit of the limi	to fully rea d CaCl ₂ + CaCl ₂ +	and which read formol l ⁻¹ hydron a. of mol = vor = 0. $H_2O + CO$ ct but only 0. s in excess. $H_2O + CO$	actant is in excess ochloric acid. blume x concentration $05_{\text{litres}} \times 0.5 \text{ mol } 1^{-1}$ 025 mol (available) D_2 $025 \text{mol CaCO}_3 \text{ is}$		3	0
	0.025mol of HCI needs 0.050mol of CaCO ₃ to fully react. 0.060mol CaCO ₃ is available							
320h	HCI is the limiting fa Empirical Formula is we e.g. Calculate the emp completely produc Mass of carbon Mass of hydrog Mass of oxygen Elements Mass or o Divide by R Divide throug smallest nun Empirical For	ctor and CaCO3 is inorked out from mass orbirical formula when 5-cing 11-89 g of CO2 arin CO2 = $12/44 \times 11.89g$ =en in H2O = $2/18 \times 6.08g$ == 5g - (3.243+0.676) =SC6CAM $\frac{3.243g}{12g mol^4}$ en of $2.270mol$ =be calculated from action	excess. percentage 00 g of an 1d 6.08 g of = 3.243g = 0.676g 5 - 3.919 = H 0.676g $\frac{0.676g}{1g mol^{-1}}$ = 0.676mol 0.0676mol 0.0676mol 0.0676mol 10 10 10 10 10 10 10 10 10 10	es of each ele organic com of H ₂ O as the = 1.081g O 1.081g $\frac{1.081g}{16g \text{ mol}^{-1}}$ = 0.0676mol $\frac{0.0676\text{mol}}{0.0676\text{mol}}$ = 1 1	cament in compound. pound was burned only products. C4H100		8	0
320g 321	Percentage Yield can e.g. Calculate the perc reacting with excess n % Yield	te calculated from action act	f ammonia	2NH _{3(g)} 2mol 34g 68g 68kg (theo 20kg 88kg x100 =	yieid. om 12kg of hydrogen pretical yield) = 29.4%		8	٢
322	The percentage yield a mass transfer or mechanical losses	actually achieved in a purification of product	process is side r	reduced by: eactions	equilibrium position		$\overline{\ensuremath{\mathfrak{S}}}$	\odot

	AH Chamistry: Possarching Chamistry		Tra	ffic Li	ght
H	Section 4d: Gravimetric Analysis	AB Nem	red	amber	green
323 324	 Gravimetric analysis can determine the mass of an element or compound in a sub an accurate electronic balance can be used to determine the mass of substance the tare function on the balance allows the balance to be set to zero when object is on top of the balance pan weighing boats are used to measure substances on a balance without contaminative weighing by difference is used to accurately measure the mass of substance. The mass of an empty weighing bottle and stopper is measured and the chemical is added to the bottle and reweighed. The difference is the mass substance in the bottle. 'weighing accurately approximately' is the term used to measure the exact mass of substance on a balance but the mass is close to a specific mass stated Weigh accurately approximately 2g of substance should mean that a mass added close to 2.00g and was accurately measured to be 2.02g. heating to constant mass is used to remove all moisture from a substance. The substance is heated to remove moisture from the substance. The substance is allowed to cool in a desiccator to prevent reabsorption of the substance has its mass measured on the balance once cooled. Repeating the steps of heating, cooling and weighing until constant mass obtained on the balance. 	stance. n an ion of the f a ss was vould of water	8		0
325a 326	 Conversion of the substance can occur when the substance undergoes a precipita reaction to allow isolation and purification. The precipitate is separated from the filtrate the filtrate tested to ensure the reaction has gone to completion. the precipitate is washed, dried to constant mass and then weighed. 	ation	$\overline{\ensuremath{\mathfrak{S}}}$		0
325b 327	 Conversion of the substance can also be achieved by volatilisation to allow isolatic purification. the substance is heated and any volatile products (often water) are evapore the substance is heated to constant mass and the final mass recorded. 	on and orated.	$\overline{\mbox{\scriptsize ($)}}$:	0

	All Chamistry, Decembing Chamistry			Tra	ffic Li	ight
	AH Chemistry: Researching Chemistry	JAB		p	ber	en
	Section 4e: Volumetric Analysis	chem		P	am	gre
328	 I am familiar with use of the technique of volumetric analysis, including: preparing a standard solution accurate dilution standardising solutions to determine accurate concentration titrating to obtain concordancy using burettes, pipettes and volumetric flasks choosing an appropriate indicator 	5		3		:
329	A standard solution is a solution of accurately known concentration.			$\overline{\mathbf{i}}$	\bigcirc	\odot
330	 Standard solutions can be prepared by: weighing a primary standard accurately dissolving in a small volume of solvent (usually deionised/distilled water) in a transferring the solution and rinsings into a volumetric flask making up to the graduation mark with solvent stoppering and inverting 	a beaker		8		:
331	 Standard solutions can be prepared by accurate dilution pipette an appropriate volume of a standard solution into a volumetric fla make up to the graduation mark with solvent (water), stoppering and inv 	ask verting.		$\overline{\mbox{\scriptsize (s)}}$		\odot
332	Primary standards must have the following properties: high state of purity stable when solid and in solution soluble reasonably high	GFM		3	☺	\odot
333	Examples of primary standards include: sodium carbonate hydrated oxalic acid potassium hydrogen Na2CO3 H2C2O4·2H2O KH(C8H4C silver nitrate potassium iodate potassium dichro AgNO3 KIO3 K2Cr2O7	phthalate)4) omate		$\overline{\mathbf{S}}$		٢
334 335	Sodium hydroxide cannot be used as a primary standard: a relatively low GFM unstable as a solid (absorbs moisture) unstable as a solid (absorbs moisture) unstable as a solid (absorbs moisture)			8	:	\odot
336	• Sodium hydroxide solution must be standardised before being used in volumetric analysis. Acid-base titrations are used for volumetric analysis between acids and bases. e.g. Calculate the number of moles of sulphuric acid which reacts with 14.7cm ³ of 0.5mol l ⁻¹ NaOH solution. no. of mol = volume x concentration = 0.0147 litres x 0.5mol l ⁻¹ = 0.00735mol H ₂ SO ₄ + 2NaOH \rightarrow Na ₂ SO ₄ + 2H ₂ O 1mol 2mol 1mol 2mol			3		:
337	International Control of	g agents: solution. I1H ₂ O		$\overline{\mbox{\scriptsize (s)}}$		0
338	$\begin{array}{c} \hline \textbf{Complexometric titrations are based on reactions using complexometric reagent}\\ \textbf{E.D.T.A. to form complexes with metal ions to determine the concentration of metal e.g. Calculate the number of moles of Ni+ that reacts with 23.05cm3 of 0.01 mol l-1 E.D.T.A no. of mol = volume x concentration = 0.02305 litres x 0.01mol l-1 = 0.0002305mol \\ \hline \textbf{E.D.T.A} + Ni^{2+} \rightarrow Ni^{2+} / \textbf{E.D.T.A. Complex} \\ 1mol & 1mol & 1mol \\ 0.0002305mol & 0.0002305mol \\ \hline \end{array}$	ts like etal ions.		$\overline{\mbox{\scriptsize (S)}}$		٢
339 340 341	 Back titrations are used to find the number of moles of a substance by reacting i excess volume of a reactant of known concentration. An excess of a known reactant (e.g. <i>standardised hydrochloric acid</i>) is added unknown reactant (e.g. <i>calcium carbonate</i>) and allowed to fully react. The unreacted leftover reactant (e.g. <i>hydrochloric acid</i>) is then titrated agair another chemical (e.g. <i>standardised sodium hydroxide</i>) to calculate the num moles of known reactant that was left over. The number of moles of known reactant (e.g. <i>hydrochloric acid</i>) which react the unknown chemical (e.g. <i>calcium carbonate</i>) is calculated by subtracting number of moles of known reactant leftover (e.g. <i>hydrochloric acid</i>) from the of moles at the start. The initial number of moles of the unknown substance (e.g. <i>calcium carbon</i> then calculated using stoichiometry in a balanced chemical equation. back titrations are useful when working out the quantity of substance in a sc low solubility. 	it with an ed to the nst nber of ted with the e number <i>ate</i>) is blid with a		8		☺

	All Chamistery Deservables - Chamistery	Tra	ffic L	ight
	AH Chemistry: Researching Chemistry	р	ber	en
	Section 4f: Practical Skills & Techniques chem	re	aml	gre
342	 Colorimetry can be used to measure the concentration of a species based on its absorbance of a particular wavelength of light. It involves: preparing a series of standard solutions of an appropriate concentration choosing an appropriate colour or wavelength of filter complementary to the colour of the species being tested using a blank preparing a calibration graph 	\odot		٢
343 344 345 346	 Colorimetry uses the relationship between colour intensity of a solution and the concentration of the coloured species present. The higher the concentration of the species the higher the absorbance of light colorimeter (spectrophotometer) measures the absorbance of light of a series of standard solutions absorbance data is used to plot a calibration graph against concentration solutions with unknown concentration are tested the absorbance obtained can determine the concentration of the species on the calibration curve. the solution of unknown concentration must have an absorbance that must lie in the straight line section of the calibration graph. 	8		0
347 348 349	 Distillation is used for identification and purification of organic compounds the boiling point of a compound can be determined by distillation boiling point is one of the physical properties which can identify compounds the more volatile compound (with the lower boiling point) is separated from the less volatile compound and can purify the more volatile compound. 	6		0
350 351 352	 Heating under reflux allows heat energy to be applied to a chemical reaction mixture over an extended period of time without volatile substances escaping. reaction mixture is placed in a round-bottomed flask with anti-bumping granules flask is fitted with a condenser (water goes in end of condenser nearest round bottom flask) flask is heated using appropriate source of heat. (heating mantle for flammable liquids) 	ŝ	:	٢
353 354 355	 Vacuum filtration involves carrying out a filtration under reduced pressure and provides a faster means of separating a precipitate from a filtrate. The following can be used for vacuum filtration using a suction pump to help speed up the time taken for the filtration to take place.: Büchner funnel Hirsch funnel Sintered glass funnel 	\odot		
356 357 364	The steps of recrystallisation to purify an impure solid include:dissolving an impure solid gently in a minimum volume of a hot solventhot filtration of the resulting mixture to remove any insoluble impuritiescooling the filtrate slowly to allow crystals of the pure compound to form, leaving soluble impuritiesfiltering, washing and drying the pure crystals•the solventinsoluble impuritiescooling the filtrate slowly to allow crystals of the pure compound to form, leaving soluble impuritiesfiltering, washing and drying the pure crystals•the solventused for recrystallisation is chosen so that the compound being purified is completely soluble at high temperatures and only sparingly soluble at lower temperatures.soluble in than to be obtained by evaporation of the solventunreactive with the soluteimmiscible with the liquid mixture or solution (usually water)one in which the solute the liquid mixture or solution (usually water)volatile to allow the solute to be obtained by evaporation of the solvent unreactive with the soluteunreactive with the solute	ŝ		0
358 359 362	 Solvent extraction involves isolating a solute from a liquid mixture or solution by extraction using a different immiscible solvent in which the solute is also soluble. the lower layer is run off into a container and the upper layer is poured into a second container and this process is repeated to maximise the quantity of solute extracted. 	$\overline{\mathbf{O}}$		0
360 361	 In solvent extraction, two immiscible solvents form two layers in the separating funnel. solute dissolves in both solvents and an equilibrium establishes between the two layers. the ratio of solute dissolved in each layer is determined by the equilibrium constant <i>K</i> 	\odot	٢	©

363	I know that the quantity of solute extracted is greater if a number of extractions using smaller volumes of solvent are carried out rather than a single extraction using a large volume of solvent.	$\overline{\mathbf{O}}$	(;)
365a 366 367	 The technique of melting point determination is important using melting point apparatus the melting point of a substance is the temperature range over which the solid first starts to melt, to when all of the solid has melted. the identity of a pure compound can be confirmed by melting point analysis and a comparison of the experimentally determined melting point with a literature or known melting point value. 	$\overline{\mbox{\scriptsize (s)}}$	\odot
368	 The determination of the melting point of a compound can give an indication of the purity of a compound the presence of impurities in the compound lowers the melting point and broadens its melting temperature range this is caused by disruption in intermolecular bonding in the crystal lattice. 	$\overline{\mbox{\scriptsize (s)}}$	\odot
365b 369	 The determination of a mixed melting point involves mixing a small quantity of the product mixed with some of the pure compound. the melting point value and the range of the melting temperature can be used to determine if the product and the pure compound are the same substance. 	$\overline{\mathbf{O}}$	<u>(;)</u>
370 371 372	 Chromatography is used to separate the components present within a mixture substances are separated due to differences in polarity or molecular size. Thin-layer chromatography (TLC) causes separation by the distribution between the stationary phase (solid) and the mobile phase (liquid). different compounds will have different solubilities and adsorption to the two phases between which they are to be partitioned. TLC involves spotting the sample to be analysed near one end of a sheet of glass or plastic that is coated with a thin layer of an adsorbent. Plate is placed on end in a covered jar containing a shallow layer of solvent. solvent rises by capillary action up through the adsorbent and differential partitioning occurs between the components of the mixture the more strongly a given component of a mixture is adsorbed onto the stationary phase, the less time it will spend in the mobile phase and the more slowly it will migrate up the plate. 	3	:
373 374	 How far the compounds are carried on a TLC plate depends on how soluble the compounds are in the chosen solvent how well they adhere to the plate. a developing agent or ultraviolet light is normally required to visualise the spots on a TLC chromatogram. 	$\overline{\mbox{\scriptsize (s)}}$	\odot
375 376	 I can calculate R_f values using: R_f = Distance travelled by the sample Distance travelled by the solvent a compound always has the same R_f value (within experimental error) under the same conditions (temperature, solvent, and saturation levels) 	$\overline{\mbox{\scriptsize (s)}}$	\odot
377	 I know that the identity of a compound can be confirmed by: comparing the experimentally determined Rf values with a literature or known value determined under the same conditions making a direct comparison on a TLC plate between the compound being tested and the pure substance where a co-spot could be used 	$\overline{\mathbf{i}}$	0
378	 TLC is used to assess the purity of substances a pure substance should appear as a single spot (when spotted and developed on a TLC plate) the presence of more than one spot shows that impurities are present. (although some impurities may not be visible by TLC analysis). 	3	0